Skip to main content

Historically unprecedented global glacier decline in the early 21st century

  • Michael Zemp (a1), Holger Frey (a1), Isabelle Gärtner-Roer (a1), Samuel U. Nussbaumer (a1), Martin Hoelzle (a1) (a2), Frank Paul (a1), Wilfried Haeberli (a1), Florian Denzinger (a1), Andreas P. Ahlstrøm (a3), Brian Anderson (a4), Samjwal Bajracharya (a5), Carlo Baroni (a6), Ludwig N. Braun (a7), Bolívar E. Cáceres (a8), Gino Casassa (a9), Guillermo Cobos (a10), Luzmila R. Dávila (a11), Hugo Delgado Granados (a12), Michael N. Demuth (a13), Lydia Espizua (a14), Andrea Fischer (a15), Koji Fujita (a16), Bogdan Gadek (a17), Ali Ghazanfar (a18), Jon Ove Hagen (a19), Per Holmlund (a20), Neamat Karimi (a21), Zhongqin Li (a22), Mauri Pelto (a23), Pierre Pitte (a14), Victor V. Popovnin (a24), Cesar A. Portocarrero (a11), Rainer Prinz (a25), Chandrashekhar V. Sangewar (a26), Igor Severskiy (a27), Oddur Sigurđsson (a28), Alvaro Soruco (a29), Ryskul Usubaliev (a30) and Christian Vincent (a31)...

Observations show that glaciers around the world are in retreat and losing mass. Internationally coordinated for over a century, glacier monitoring activities provide an unprecedented dataset of glacier observations from ground, air and space. Glacier studies generally select specific parts of these datasets to obtain optimal assessments of the mass-balance data relating to the impact that glaciers exercise on global sea-level fluctuations or on regional runoff. In this study we provide an overview and analysis of the main observational datasets compiled by the World Glacier Monitoring Service (WGMS). The dataset on glacier front variations (∼42 000 since 1600) delivers clear evidence that centennial glacier retreat is a global phenomenon. Intermittent readvance periods at regional and decadal scale are normally restricted to a subsample of glaciers and have not come close to achieving the maximum positions of the Little Ice Age (or Holocene). Glaciological and geodetic observations (∼5200 since 1850) show that the rates of early 21st-century mass loss are without precedent on a global scale, at least for the time period observed and probably also for recorded history, as indicated also in reconstructions from written and illustrated documents. This strong imbalance implies that glaciers in many regions will very likely suffer further ice loss, even if climate remains stable.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Historically unprecedented global glacier decline in the early 21st century
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Historically unprecedented global glacier decline in the early 21st century
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Historically unprecedented global glacier decline in the early 21st century
      Available formats
Copyright © International Glaciological Society 2015 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Michael Zemp <>
Hide All

Complete affiliations of the WGMS National Correspondents are given in the Appendix.

Hide All
Andreassen, LM, Elvehøy, H, Kjøllmoen, B, Engeset, RV and Haakensen, N (2005) Glacier mass balance and length variations in Norway. Ann. Glaciol., 42, 317325 (doi: 10.3189/172756405781812826)
Andreassen, LM, Kjøllmoen, B, Rasmussen, LA, Melvold, K and Nordli, Ø (2012) Langfjordjøkelen, a rapidly shrinking glacier in northern Norway. J. Glaciol., 58(209), 581593 (doi: 10.3189/2012JoG11J014)
Arendt, AA and 77 others (2012) Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder, CO
Bajracharya, SR and Mool, P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol.,, 50(53), 8186 (doi: 10.3189/172756410790595895)
Benn, DI, Warren, CR and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(3–4), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Berthier, E, Arnaud, Y, Baratoux, D, Vincent, C and Rémy, F (2004) Recent rapid thinning of the ‘Mer de Glace’ glacier derived from satellite optical images. Geophys. Res. Lett., 31(17), L17401 (doi: 10.1029/2004GL020706)
Berthier, E, Schiefer, E, Clarke, GKC, Menounos, B and Rémy, F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nature Geosci., 3(2), 9295 (doi: 10.1038/ngeo737)
Berthier, E and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere, 8(6), 22752291 (doi: 10.5194/tc-8-2275-2014)
Bliss, A, Hock, R and Radić, V (2014) Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res.: Earth Surf., 119(4), 717730 (doi: 10.1002/2013JF002931)
Bojinski, S, Verstraete, M, Peterson, TC, Richter, C, Simmons, A and Zemp, M (2014) The concept of Essential Climate Variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc., 95(9), 14311443 (doi: 10.1175/BAMS-D-13-00047.1)
Braithwaite, RJ (2009) After six decades of monitoring glacier mass balance we still need data but it should be richer data. Ann. Glaciol., 50(50), 191197 (doi: 10.3189/172756409787769573)
Chen, J and Funk, M (1990) Mass balance of Rhonegletscher during 1882/83–1986/87. J. Glaciol., 36(123), 199209
Chinn, T, Winkler, S, Salinger, MJ and Haakensen, N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr. Ann. A, 87(1), 141157 (doi: 10.1111/j.0435-3676.2005.00249.x)
Church, JA and 13 others (2013) Sea level change. In Stocker, TF and 9 others eds Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 11371216 (doi: 10.1017/CBO9781107415324.026)
Citterio, M, Paul, F, Ahlstrøm, AP, Jepsen, HF and Weidick, A (2009) Remote sensing of glacier change in West Greenland: accounting for the occurrence of surge-type glaciers. Ann. Glaciol., 50(53), 7080
Cogley, JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50(50), 96100 (doi: 10.3189/172756409787769744)
Cogley, JG and Adams, WP (1998) Mass balance of glaciers other than the ice sheets. J. Glaciol., 44(147), 315325
Cogley, JG and 10 others (2011) Glossary of glacier mass balance and related terms. (IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2) UNESCO–International Hydrological Programme, Paris
Cook, AJ, Fox, AJ, Vaughan, DG and Ferrigno, JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541544 (doi: 10.1126/science.1104235)
Cox, LH and March, RS (2004) Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. J. Glaciol., 50(170), 363370 (doi: 10.3189/172756504781829855)
Crichton, M (2004) State of fear. New York, Harper Collins Publishers
Davies, BJ and Glasser, NF (2012) Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (∼AD 1870) to 2011. J. Glaciol., 58(212), 10631084 (doi: 10.3189/2012JoG12J026)
Demuth, M and 6 others (2008) Recent and past-century variations in the glacier resources of the Canadian Rocky Mountains: Nelson River system. In Bonardi, L ed. Mountain glaciers and climate change of the last century. Terra Glacialis (special issue), 2752
Dowdeswell, JA and 9 others (1997) The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 14(48), 114 (doi: 10.1006/qres.1997.1900)
Dyurgerov, MB and Meier, MF (2005) Glaciers and the changing Earth system: a 2004 snapshot. (INSTAAR Occasional Paper 58) Institute of Arctic and Alpine Research, Boulder, CO
Easterbrook, DJ, Ollier, CD and Carter, RM (2013) Observations: the cryosphere. In Climate change reconsidered II. Nongovernmental International Panel on Climate Change (NIPCC), The Heartland Institute, Chicago, IL, 629712
Elsberg, DH, Harrison, WD, Echelmeyer, KA and Krimmel, RM (2001) Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol., 47(159), 649658 (doi: 10.3189/172756501781831783)
Felix, RW (1999) The next Ice Age – now! Not by fire but by ice. Bellevue, WA, Sugarhouse Publishing
Felix, RW (2014) Glaciers are growing around the world, including the United States.
Fischer, A (2011) Comparison of direct and geodetic mass balances on a multi-annual time scale. Cryosphere, 5(1), 107124 (doi: 10.5194/tc-5-107-2011)
Fischer, M, Huss, M and Hoelzle, M (2014) Surface elevation and mass changes of all Swiss glaciers 1980–2010. Cryosphere Discuss., 8(4), 45814617 (doi: 10.5194/tcd-8-4581-2014)
Forel, FA (1895) Les variations périodiques des glaciers. Discours préliminaire. Arch. Sci. Phys. Nature, 34, 209229
Fountain, AG (1996) Effects of snow and firn hydrology on the physical and chemical characteristics of glacial runoff. Hydrol. Process., 10(4), 509521
Gardelle, J, Berthier, E and Arnaud, Y (2012a) Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol., 58(208), 419422 (doi: 10.3189/2012JoG11J175)
Gardelle, J, Berthier, E and Arnaud, Y (2012b) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci., 5(5), 322325 (doi: 10.1038/ngeo1450)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Gordon, JE, Haynes, VM and Hubbard, A (2008) Recent glacier changes and climate trends on South Georgia. Global Planet. Change 60(1–2), 7284 (doi: 10.1016/j.gloplacha.2006.07.037)
Grove, JM (2004) Little Ice Ages: ancient and modern, Vols I and II, 2nd edn. Routledge, London and New York
Haeberli, W (1998) Historical evolution and operational aspects of worldwide glacier monitoring. In Haeberli, W, Hoelzle, M and Suter, S eds Into the second century of worldwide glacier monitoring: prospects and strategies. Studies and Reports in Hydrology 56, UNESCO–International Hydrological Programme, Paris, 3551
Haeberli, W and Holzhauser, H (2003) Alpine glacier mass changes during the past two millennia. PAGES News, 11(1), 1315
Haeberli, W and Linsbauer, A (2013) Brief communication. Global glacier volumes and sea level: small but systematic effects of ice below the surface of the ocean and of new local lakes on land. Cryosphere, 7(3), 817821 (doi: 10.5194/tc-7-817-2013)
Haeberli, W, Cihlar, J and Barry, RG (2000) Glacier monitoring within the Global Climate Observing System. Ann. Glaciol., 31, 241246 (doi: 10.3189/172756400781820192)
Haeberli, W, Whiteman, C and Shroder, JF eds (2014) Snow and ice-related hazards, risks, and disasters. Elsevier, Amsterdam
Hagen, JO, Kohler, J, Melvold, K and Winther, J-G (2003) Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res., 22(2), 145159 (doi: 10.1111/j.1751-8369.2003.tb00104.x)
Hall, DK, Bayr, KJ, Schöner, W, Bindschadler, RA and Chien, JYL (2003) Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sens. Environ., 86(4), 566577 (doi: 10.1016/S0034-4257(03)00134-2)
Hewitt, K (2007) Tributary glacier surges: an exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol., 53(181), 181188 (doi: 10.3189/172756507782202829)
Hoelzle, M and Trindler, M (1998) Data management and application. In Haeberli, W, Hoelzle, M and Suter, S eds Into the second century of worldwide glacier monitoring: prospects and strategies. Studies and Reports in Hydrology 56 UNESCO–International Hydrological Programme, Paris, 5373
Hoelzle, M, Haeberli, W, Dischl, M and Peschke, W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Global Planet. Change, 36(4), 295306 (doi: 10.1016/S0921-8181(02)00223-0)
Holzhauser, H, Magny, M and Zumbühl, HJ (2005) Glacier and lake-level variations in west-Central Europe over the last 3500 years. Holocene, 15(6), 789801 (doi: 10.1191/0959683605hl853ra)
Huss, M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47(7), W07511 (doi: 10.1029/2010WR010299)
Huss, M (2012) Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900–2100. Cryosphere, 6(4), 713727 (doi: 10.5194/tc-6-713-2012)
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 7(3), 877887 (doi: 10.5194/tc-7-877-2013)
Huss, M and Bauder, A (2009) 20th-century climate change inferred from four long-term point observations of seasonal mass balance. Ann. Glaciol., 50(50), 207214 (doi: 10.3189/172756409787769645)
Huss, M, Bauder, A and Funk, M (2009) Homogenization of long-term mass-balance time series. Ann. Glaciol., 50(50), 198206 (doi: 10.3189/172756409787769627)
Huss, M, Hock, R, Bauder, A and Funk, M (2012) Conventional versus reference-surface mass balance. J. Glaciol., 58(208), 278286 (doi: 10.3189/2012JoG11J216)
Jóhannesson, T, Raymond, C and Waddington, E (1989) Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355369
Jomelli, V and 12 others (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature, 474(7350), 196199 (doi: 10.1038/nature10150)
Kääb, A (2008) Glacier volume changes using ASTER satellite stereo and ICESat GLAS laser altimetry: a test study on Edgeøya, Eastern Svalbard. IEEE Trans. Geosci. Remote Sens., 46(10), 28232830 (doi: 10.1109/TGRS.2008.2000627)
Kääb, A, Wessels, RL, Haeberli, W, Huggel, C, Kargel, JS and Khalsa, SJS (2003) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. Eos, 84(13), 117, 121 (doi: 10.1029/2003EO130001)
Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Raup, BH (2014) Global Land Ice Measurements from Space. Springer, Berlin and Heidelberg (doi: 10.1007/978-3-540-79818-7)
Kaser, G, Cogley, JG, Dyurgerov, MB, Meier, MF and Ohmura, A (2006) Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33(19), L19501 (doi: 10.1029/2006GL027511)
Kaser, G, Großhauser, M and Marzeion, B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl Acad. Sci. USA (PNAS), 107(47), 20 22320 227 (doi: 10.1073/pnas.1008162107)
Krimmel, RM (1999) Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington. Geogr. Ann. A, 81(4), 653658 (doi: 10.1111/j.0435-3676.1999.00093.x)
Kuhn, M, Markl, G, Kaser, G, Nickus, U, Obleitner, F, Schneider, H (1985) Fluctuations of climate and mass balance: different responses of two adjacent glaciers. Z. Gletscherkd. Glazialgeol., 21(1–2), 409416
Lang, H and Patzelt, G (1971) Die Volumenänderungen des Hintereisferners (Ötztaler Alpen) im Vergleich zur Massenänderung im Zeitraum 1953–64. Z. Gletscherkd. Glazialgeol., 7(1–2), 3955
Le Roy, M and 6 others (2015) Calendar-dated glacier variations in the western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quat. Sci. Rev., 108, 122 (doi: 10.1016/j.quascirev.2014.10.033)
Leclercq, PW and Oerlemans, J (2012) Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dyn 38(5–6), 10651079 (doi: 10.1007/s00382-011-1145-7)
Leclercq, PW, Oerlemans, J and Cogley, JG (2011) Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv. Geophys., 32(4–5), 519535 (doi: 10.1007/s10712-011-9121-7)
Letréguilly, A and Reynaud, L (1990) Space and time distribution of glacier mass-balance in the Northern Hemisphere. Arct. Alp. Res., 22(1), 4350 (doi: 10.2307/1551719)
Lingle, CS and Fatland, DR (2003) Does englacial water storage drive temperate glacier surges? Ann. Glaciol., 36, 1420 (doi: 10.3189/172756403781816464)
Loriaux, T and Casassa, G (2013) Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context. Global Planet. Change, 102, 3340 (doi: 10.1016/j.gloplacha.2012.12.012)
Luckman, BH (2006) The neoglacial history of Peyto Glacier. In Demuth, MN, Munro, DS and Young, GJ, eds. Peyto Glacier: one century of science. Saskatoon, Environment Canada. National Water Research Institute, 2557 (NHRI Science Report 8.)
Lüthi, MP, Bauder, A and Funk, M (2010) Volume change reconstruction of Swiss glaciers from length change data. J. Geophys. Res., 115(F4), F04022 (doi: 10.1029/2010JF001695)
Machguth, H and Huss, M (2014) The length of the world’s glaciers: a new approach for the global calculation of center lines. Cryosphere, 8(5), 17411755 (doi: 10.5194/tc-8-1741-2014)
Marzeion, B, Jarosch, AH and Hofer, M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 6(6), 12951322 (doi: 10.5194/tc-6-1295-2012)
Marzeion, B, Cogley, JG, Richter, K and Parkes, D (2014) Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345(6199), 919921 (doi: 10.1126/science.1254702)
Masiokas, MH, Rivera, A, Espizua, LE, Villalba, R, Delgado, S and Aravena, JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr. Palaeoclimatol., Palaeoecol., 281(3–4), 242268 (doi: 10.1016/j.palaeo.2009.08.006)
Meier, MF and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Mercanton, PL ed (1916) Vermessungen am Rhonegletscher/Mensuration au glacier du Rhône: 1874–1915. Neue Denkschr. Schweiz. Naturforsch. Ges., 52, 189
Mernild, SH, Lipscomb, WH, Bahr, DB, Radić, V and Zemp, M (2013) Global glacier changes: a revised assessment of committed mass losses and sampling uncertainties. Cryosphere, 7(5), 15651577 (doi: 10.5194/tc-7-1565-2013)
Müller, H and Kappenberger, G (1991) Claridenfirn, Messungen 1914–1984. Zürcher Geogr. Schr., 40, 79
Nakawo, M, Raymond, CF and Fountain, AG eds (2000) Debris-Covered Glaciers. Proceedings of an International Workshop held in Seattle, 13–15 September 2000. IAHS Publ. 264 (Workshop at Seattle 2000 – Debris-Covered Glaciers)
National Snow and Ice Data Center (NSIDC) (2009) Glacier Photograph Collection. (updated 2015) (doi: 10.7265/N5/NSIDC-GPC-2009-12)
Neckel, N, Kropácek, J, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009 (doi: 10.1088/1748-9326/9/1/014009)
Nussbaumer, SU, Nesje, A and Zumbühl, HJ (2011) Historical glacier fluctuations of Jostedalsbreen and Folgefonna (southern Norway) reassessed by new pictorial and written evidence. Holocene, 21(3), 455471 (doi: 10.1177/0959683610385728)
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 5(1), 271290 (doi: 10.5194/tc-5-271-2011)
Nuth, C and 7 others (2013) Decadal changes from a multi-temporal glacier inventory of Svalbard. Cryosphere, 7(5), 16031621 (doi: 10.5194/tc-7-1603-2013)
Oerlemans, J (2001) Glacier and climate change. Lisse, A.A. Balkema Publishers
Oerlemans, J (2005) Extracting a climate signal from 169 glacier records. Science, 308(5722), 675677 (doi: 10.1126/science.1107046)
Oerlemans, J and Fortuin, JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258(5079), 115117 (doi: 10.1126/science.258.5079.115)
Østrem, G and Haakensen, N (1999) Map comparison or traditional mass-balance measurements: which method is better? Geogr. Ann. A, 81(4), 703711
Paul, F (2008) Calculation of glacier elevation changes with SRTM: is there an elevation dependent bias? J. Glaciol., 54(188), 945946 (doi: 10.3189/002214308787779960)
Paul, F (2010) The influence of changes in glacier extent and surface elevation on modeled mass balance. Cryosphere, 4(4), 569581 (doi: 10.5194/tc-4-569-2010)
Paul, F and Haeberli, W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys. Res. Lett., 35(21) L21502 (doi: 10.1029/2008GL034718)
Pelto, MS and Hedlund, C (2001) Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A. J. Glaciol., 47(158), 497506 (doi: 10.3189/172756501781832098)
Permanent Service on the Fluctuations of Glaciers (PSFG) (1967) Fluctuations of glaciers 1959–65 (Vol. I). Permanent Service on the Fluctuations of Glaciers, Zürich
Pfeffer, WT and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Prinz, R, Fischer, A, Nicholson, L and Kaser, G (2011) Seventy-six years of mean mass balance rates derived from recent and reevaluated ice volume measurements on tropical Lewis Glacier, Mount Kenya. Geophys. Res. Lett., 38(20), L20502 (doi: 10.1029/2011GL049208)
Purdie, H, Anderson, B, Chinn, T, Owens, I, Mackintosh, A and Lawson, W (2014) Franz Josef and Fox Glaciers, New Zealand: historic length records. Global Planet. Change, 121, 4155 (doi: 10.1016/j.gloplacha.2014.06.008)
Rabatel, A and 27 others (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 7(1), 81102 (doi: 10.5194/tc-7-81-2013)
Radić, V and Hock, R (2014) Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res., 115(F1), F01010 (doi: 10.1029/2009JF001373)
Radić, V, Bliss, A, Beedlow, AC, Hock, R, Miles, E and Cogley, JG (2013) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn., 42(1–2), 3758 (doi: 10.1007/s00382-013-1719-7)
Rankl, M, Kienholz, C and Braun, M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere, 8(3), 977989 (doi: 10.5194/tc-8-977-2014)
Raper, SCB and Braithwaite, RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature, 439(7074), 311313
Reichert, BK, Bengtsson, L and Oerlemans, J (2002) Recent glacier retreat exceeds internal variability. J. Climate, 15(21), 30693081 (doi: 10.1175/1520-0442 (2002)015<3069:RGREIV>2.0.CO;2)
Roe, GH (2011) What do glaciers tell us about climate variability and climate change? J. Glaciol., 57(203), 567578 (doi: 10.3189/002214311796905640)
Rolstad, C, Haug, T and Denby, B (2009) Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway. J. Glaciol., 55(192), 666680 (doi: 10.3189/002214309789470950)
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ngeo1068)
Serreze, MC and Barry, RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet. Change 77(1–2), 8596 (doi: 10.1016/j.gloplacha.2011.03.004)
Svoboda, F and Paul, F (2009) A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions. Ann. Glaciol., 50(53), 1121 (doi: 10.3189/172756410790595912)
Thibert, E, Blanc, R, Vincent, C and Eckert, N (2008) Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. J. Glaciol. 54(186), 522532 (doi: 10.3189/002214308785837093)
Vaughan, DG and 13 others (2013) Observations: cryosphere. In Stocker, TF and 9 others eds Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, 317382 (doi: 10.1017/CBO9781107415324.012)
Vincent, C, Kappenberger, G, Valla, F, Bauder, A, Funk, M and Le Meur, E (2004) Ice ablation as evidence of climate change in the Alps over the 20th century. J. Geophys. Res., 109(D10), D10104 (doi: 10.1029/2003JD003857)
Weber, M, Braun, LN, Mauser, W and Prasch, M (2010) Contribution of rain, snow- and icemelt in the Upper Danube discharge today and in the future. Geogr. Fís. Din. Quat., 33(2), 221230
World Glacier Monitoring Service (WGMS) (2008a) Global glacier changes: facts and figures. UNEP, World Glacier Monitoring Service, Zürich
WGMS (2008b) Fluctuations of glaciers 2000–2005 (Vol. IX). ICSU (FAGS)/IUGG–(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zürich (doi: 10.5904/wgms-fog-2008-12)
WGMS (2012) Fluctuations of glaciers 2005–2010 (Vol. X). ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zürich (doi: 10.5904/wgms-fog-2012-11)
WGMS (2013) Glacier Mass Balance Bulletin No. 12 (2010–2011). ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zürich (doi: 10.5904/wgms-fog-2013-11)
Yde, JC and Paasche, Ø (2010) Reconstructing climate change: not all glaciers suitable. Eos,, 91(21), 189190 (doi: 10.1029/2010EO210001)
Zemp, M, Hoelzle, M and Haeberli, W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann. Glaciol., 50(50), 101111 (doi: 10.3189/172756409787769591)
Zemp, M and 6 others (2010) Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 2: Comparison of glaciological and volumetric mass balances. Cryosphere, 4(3), 345357 (doi: 10.5194/tc-4-345-2010)
Zemp, M, Zumbühl, HJ, Nussbaumer, SU, Masiokas, M, Espizua, LE and Pitte, P (2011) Extending glacier monitoring into the Little Ice Age and beyond. PAGES News, 19(2), 6769
Zemp, M and 16 others (2013) Reanalysing glacier mass balance measurement series. Cryosphere, 7(4), 12271245 (doi: 10.5194/tc-7-1227-2013)
Zumbühl, HJ (1980) Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts. Ein Beitrag zur Gletschergeschichte und Erforschung des Alpenraumes. Denkschr. Schweiz. Naturforsch. Ges., 92, 279
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 147
Total number of PDF views: 570 *
Loading metrics...

Abstract views

Total abstract views: 1067 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 23rd September 2018. This data will be updated every 24 hours.