Skip to main content
×
×
Home

Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield

  • GABRIELA COLLAO-BARRIOS (a1), FABIEN GILLET-CHAULET (a1), VINCENT FAVIER (a1), GINO CASASSA (a2) (a3), ETIENNE BERTHIER (a4), INÉS DUSSAILLANT (a4), JÉRÉMIE MOUGINOT (a1) (a5) and ERIC RIGNOT (a5) (a6)...
Abstract

We simulate the ice dynamics of the San Rafael Glacier (SRG) in the Northern Patagonia Icefield (46.7°S, 73.5°W), using glacier geometry obtained by airborne gravity measurements. The full-Stokes ice flow model (Elmer/Ice) is initialized using an inverse method to infer the basal friction coefficient from a satellite-derived surface velocity mosaic. The high surface velocities (7.6 km a−1) near the glacier front are explained by low basal shear stresses (<25 kPa). The modelling results suggest that 98% of the surface velocities are due to basal sliding in the fast-flowing glacier tongue (>1 km a−1). We force the model using different surface mass-balance scenarios taken or adapted from previous studies and geodetic elevation changes between 2000 and 2012. Our results suggest that previous estimates of average surface mass balance over the entire glacier () were likely too high, mainly due to an overestimation in the accumulation area. We propose that most of SRG imbalance is due to the large ice discharge (−0.83 ± 0.08 Gt a−1) and a slightly positive (0.08 ± 0.06 Gt a−1). The committed mass-loss estimate over the next century is −0.34 ± 0.03 Gt a−1. This study demonstrates that surface mass-balance estimates and glacier wastage projections can be improved using a physically based ice flow model.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice flow modelling to constrain the surface mass balance and ice discharge of San Rafael Glacier, Northern Patagonia Icefield
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Corresponding author
Correspondence: Gabriela Collao-Barrios <Gabriela.collao@univ-grenoble-alpes.fr>
References
Hide All
Aniya, M (1988) Glacier inventory for the Northern Patagonia Icefield, Chile, and variations 1944/45 to 1985/86. Arct. Alp. Res., 20(2), 179 (doi: 10.2307/1551496)
Aniya, M (1999) Recent glacier variations of the Hielos Patagónicos, South America, and their contribution to sea-level change. Arct. Antarct. Alp. Res., 31(2), 165173 (doi: 10.2307/1552604)
Arthern, RJ, Hindmarsh, RCA and Williams, CR (2015) Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. J. Geophys. Res. Earth Surf., 120(7), 2014JF003239 (doi: 10.1002/2014JF003239)
Berthier, E, Cabot, V, Vincent, C and Six, D (2016) Decadal region-wide and glacier-wide mass balances derived from multi-temporal ASTER satellite digital elevation models. Validation over the Mont-Blanc area. Front. Earth Sci., 4, 63 (doi: 10.3389/feart.2016.00063)
Carrasco, JF, Casassa, G and Rivera, A (2002) Meteorological and climatological aspects of the Southern Patagonia Icefield. The Patagonian Icefields, Springer US, 29–41. http://link.springer.com/chapter/10.1007/978-1-4615-0645-4_4
Casassa, G, Rodríguez, JL and Loriaux, T (2014) A new glacier inventory for the Southern Patagonia Icefield and areal changes 1986–2000. Global Land Ice Measurements from Space, Springer, Berlin, Heidelberg, 639–660 (doi: 10.1007/978-3-540-79818-7_27)
CECs and DGA (2012) Variaciones recientes de glaciares en respuesta al cambio climático: características glaciológicas de los glaciares San Rafael, Nef y Colonia, Campo de Hielo Norte, Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Davies, BJ and Glasser, NF (2012) Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (~AD 1870) to 2011. J. Glaciol., 58(212), 10631084 (doi: 10.3189/2012JoG12J026)
Frey, PJ and Alauzet, F (2005) Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng., 194, 50685082 (doi: 10.1016/j.cma.2004.11.025)
Gagliardini, O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6(4), 12991318 (doi: 10.5194/gmd-6-1299-2013)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)
Garreaud, R, Lopez, P, Minvielle, M and Rojas, M (2013) Large-scale control on the Patagonian climate. J. Clim., 26(1), 215230 (doi: 10.1175/JCLI-D-12-00001.1)
Garreaud, RD, Vuille, M, Compagnucci, R and Marengo, J (2009) Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281(3–4), 180195 (doi: 10.1016/j.palaeo.2007.10.032)
Geoestudios and DGA (2014) Caracterización física del manto nival en Campo de Hielo Norte en base a mediciones GPR terrestre, S.I.T. 359. Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile
Gillet-Chaulet, F and 8 others (2012) Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere, 6(6), 15611576 (doi: 10.5194/tc-6-1561-2012)
Glasser, NF, Harrison, S, Jansson, KN, Anderson, K and Cowley, A (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat. Geosci., 4(5), 303307 (doi: 10.1038/ngeo1122)
Gourlet, P, Rignot, E, Rivera, A and Casassa, G (2016) Ice thickness of the northern half of the Patagonia Icefields of South America from high-resolution airborne gravity surveys. Geophys. Res. Lett., 43(1), 2015GL066728 (doi: 10.1002/2015GL066728)
Hock, R (2003) Temperature index melt modelling in mountain areas. J. Hydrol., 282(1), 104115
Jacob, T, Wahr, J, Pfeffer, WT and Swenson, S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518 (doi: 10.1038/nature10847)
Jay-Allemand, M, Gillet-Chaulet, F, Gagliardini, O and Nodet, M (2011) Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge. Cryosphere, 5(3), 659672 (doi: 10.5194/tc-5-659-2011)
Kistler, R and 12 others (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc., 82(2), 247268
Koppes, M, Conway, H, Rasmussen, LA and Chernos, M (2011) Deriving mass balance and calving variations from reanalysis data and sparse observations, Glaciar San Rafael, northern Patagonia, 1950–2005. Cryosphere, 5(3), 791808 (doi: 10.5194/tc-5-791-2011)
Lenaerts, JTM and 6 others (2014) Extreme precipitation and climate gradients in Patagonia revealed by high-resolution regional atmospheric climate modeling. J. Clim., 27(12), 46074621 (doi: 10.1175/JCLI-D-13-00579.1)
Lopez, P and 5 others (2010) A regional view of fluctuations in glacier length in southern South America. Glob. Planet. Change, 71(1–2), 85108 (doi: 10.1016/j.gloplacha.2009.12.009)
MacAyeal, DR (1993) A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39(131), 9198 (doi: 10.3189/S0022143000015744)
Matsuoka, K and Naruse, R (1999) Mass balance features derived from a firn core at Hielo Patagónico Norte, South America. Arct. Antarct, Alp. Res., 31, 333340
Morlighem, M and 5 others (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
Mouginot, J and Rignot, E (2015) Ice motion of the Patagonian Icefields of South America: 1984–2014. Geophys. Res. Lett., 42(5), 2014GL062661 (doi: 10.1002/2014GL062661)
Nicolas, JP and Bromwich, DH (2010) Climate of West Antarctica and influence of marine air intrusions. J. Clim., 24(1), 4967 (doi: 10.1175/2010JCLI3522.1)
Ohata, T, Ishikawa, N, Kobayashi, S and Kawaguchi, S (1985) Heat balance at the snow surface in a katabatic wind zone, East Antarctica. Ann. Glaciol., 6, 174177 (doi: 10.3189/1985AoG6-1-174-177)
Osmaston, H (2005) Estimates of glacier equilibrium line altitudes by the area x altitude, the area x altitude balance ratio and the area x altitude balance index methods and their validation. Quat. Int., 138, 2231 (doi: 10.1016/j.quaint.2005.02.004)
Pfeffer, WT and 19 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Price, SF, Payne, AJ, Howat, IM and Smith, BE (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl. Acad. Sci., 108(22), 89788983 (doi: 10.1073/pnas.1017313108)
Rignot, E, Forster, R and Isacks, B (1996) Mapping of glacial motion and surface topography of Hielo Patagónico Norte, Chile, using satellite SAR L-band interferometry data. Ann. Glaciol., 23, 209216 (doi: 10.3189/S026030550001346X)
Rignot, E, Rivera, A and Casassa, G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science, 302(5644), 434437 (doi: 10.1126/science.1087393)
Rivera, A, Benham, T, Casassa, G, Bamber, J and Dowdeswell, JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob. Planet. Change, 59(1–4), 126137 (doi: 10.1016/j.gloplacha.2006.11.037)
Roe, GH (2005) Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33(1), 645671 (doi: 10.1146/annurev.earth.33.092203.122541)
Schaefer, M, Machguth, H, Falvey, M and Casassa, G (2013) Modeling past and future surface mass balance of the Northern Patagonia Icefield. J. Geophys. Res. Earth Surf., 118(2), 571588 (doi: 10.1002/jgrf.20038)
Seroussi, H and 6 others (2011) Ice flux divergence anomalies on 79north Glacier, Greenland. Geophys. Res. Lett., 38(9), L09501 (doi: 10.1029/2011GL047338)
Seroussi, H and 5 others (2013) Dependence of century-scale projections of the Greenland ice sheet on its thermal regime. J. Glaciol., 59(218), 10241034 (doi: 10.3189/2013JoG13J054)
Smith, RB and Barstad, I (2004) A linear theory of orographic precipitation. J. Atmos. Sci., 61(12), 13771391 (doi: 10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2)
Thompson, DWJ and Wallace, JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim., 13(5), 10001016 (doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2)
Uppala, SM and 45 others (2005) The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 29613012
Vimeux, F and 7 others (2008) A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Valentin (Northern Patagonia Icefield, Chile). J. Geophys. Res.-Atmos., 113, D16118 (doi: 10.1029/2007JD009502)
Välisuo, I, Zwinger, T and Kohler, J (2017) Inverse solution of surface mass balance of Midtre Lovénbreen, Svalbard. J. Glaciol., 63(240), 593602 (doi: 10.1017/jog.2017.26)
Willis, MJ, Melkonian, AK, Pritchard, ME and Rivera, A (2012) Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012. Geophys. Res. Lett., 39(17), L17501 (doi: 10.1029/2012GL053136)
Yamada, T (1987) Glaciological characteristic revealed by a 37.6 m deep core drilled al the accumulation area of San Rafael Glacier, the Northern Patagonia lcefield. Bull. Glacier Res., 4, 5968
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed