Skip to main content
×
Home

Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)

  • Robert A. Bindschadler (a1), Sophie Nowicki (a1), Ayako Abe-Ouchi (a2), Andy Aschwanden (a3), Hyeungu Choi (a4), Jim Fastook (a5), Glen Granzow (a6), Ralf Greve (a7), Gail Gutowski (a8), Ute Herzfeld (a9), Charles Jackson (a8), Jesse Johnson (a6), Constantine Khroulev (a3), Anders Levermann (a10), William H. Lipscomb (a11), Maria A. Martin (a12), Mathieu Morlighem (a13), Byron R. Parizek (a14), David Pollard (a15), Stephen F. Price (a11), Diandong Ren (a16), Fuyuki Saito (a17), Tatsuru Sato (a7), Hakime Seddik (a7), Helene Seroussi (a18), Kunio Takahashi (a17), Ryan Walker (a19) and Wei Li Wang (a1)...
Abstract
Abstract

Ten ice-sheet models are used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea-level change. In most cases, the ice volume above flotation lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments, suggesting that nonlinear feedbacks are modest. Our models indicate that Greenland is more sensitive than Antarctica to likely atmospheric changes in temperature and precipitation, while Antarctica is more sensitive to increased ice-shelf basal melting. An experiment approximating the Intergovernmental Panel on Climate Change’s RCP8.5 scenario produces additional first-century contributions to sea level of 22.3 and 8.1 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 14 cm, respectively. By 200 years, projections increase to 53.2 and 26.7 cm, respectively, with ranges of 79 and 43 cm. Linear interpolation of the sensitivity results closely approximates these projections, revealing the relative contributions of the individual forcings on the combined volume change and suggesting that total ice-sheet response to complicated forcings over 200 years can be linearized.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
      Available formats
      ×
Copyright
References
Hide All
Abe-Ouchi A and Blatter H (1993) On the initiation of ice sheets. Ann. Glaciol., 18, 203207
Abe-Ouchi A, Segawa T and Saito F (2007) Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Climate Past, 3(3), 423438 (doi: 10.5194/cp-3-423-2007)
Albrecht T, Martin M, Haseloff M, Winkelmann R and Levermann A (2011) Parameterization for subgrid-scale motion of ice-shelf calving-fronts. Cryosphere, 5(1), 3544 (doi: 10.5194/tc-5-35-2011)
Amestoy PR, Duff IS, Koster J and L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl., 23(1), 1541 (doi: 10.1137/S0895479899358194)
Amestoy PR, Guermouche A, L’Excellent J-Y and Pralet S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput., 32(2), 136156 (doi: 10.1016/j.parco.2005.07.004)
Arthern RJ, Winebrenner DP and Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107 (doi: 10.1029/2004JD005667)
Aschwanden A, Bueler E, Khroulev C and Blatter H (2012) An enthalpy formulation for glaciers and ice sheets. J. Glaciol., 58(209), 441457 (doi: 10.3189/2012JoG11J088)
Bamber JL, Layberry RL and Gogineni SP (2001) A new ice thickness and bed dataset for the Greenland ice sheet. 1. Measurement, data reduction, and errors. J. Geophys. Res., 106(D24), 33 77333 780 (doi: 10.1029/2001JD900054)
Bamber JL, Gomez-Dans JL and Griggs JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: data and methods. Cryosphere, 3(1), 101111
Blatter H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344
Bohlander J and Scambos TA (2007) Antarctic coastlines and grounding line derived from MODIS Mosaic of Antarctica (MOA). National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/moa/
Bougamont M, Price S, Christoffersen P and Payne AJ (2011) Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology. J. Geophys. Res., 116(F4), F04018 (doi: 10.1029/2011JF002025)
Bueler E and Brown J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res., 114(F3), F03008 (doi: 10.1029/2008JF001179)
Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13(10), 16741696 (doi: 10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2)
Das SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Dukowicz JK and Baumgardner JR (2000) Incremental remapping as a transport/advection algorithm. J. Comput. Phys., 160(1), 318335 (doi: 10.1006/jcph.2000.6465)
Dukowicz JK, Price SF and Lipscomb WH (2010) Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action. J. Glaciol., 56(197), 480496 (doi: 10.3189/002214310792447851)
Dupont TK and Alley RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), L04503 (doi: 10.1029/2004GL022024)
Ettema J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)
Evans KJ and 10 others (2012) A modern solver interface to manage solution algorithms in the Community Earth System Model. Int. J. High Perform. Comput. Appl., 26(1), 5462 (doi: 10.1177/1094342011435159)
Fastook JL (1990) A map-plane finite-element program for ice sheet reconstruction: a steady-state calibration with Antarctica and a reconstruction of the Laurentide ice sheet. In Brown HU ed. Computer assisted analysis and modelling on the IBM 3090. IBM Scientific and Technical Computing Department, White Plains, NY, 4580
Fastook JL (1993) The finite-element method for solving conservation equations in glaciology. Comp. Sci. Eng., 1(1), 5567
Fastook JL and Hughes TJ (1990) Changing ice loads on the earth’s surface during the last glacial cycle. In Sabadini R, Lambeck K and Boschi E eds. Glacial isostasy, sea-level, and mantle rheology. (NATO Science Series C: Mathematical and Physical Sciences 334). Kluwer Academic, Dordrecht
Fastook JL and Prentice M (1994) A finite-element model of Antarctica: sensitivity test for meteorological mass-balance relationship. J. Glaciol., 40(134), 167175
Fausto RS, Ahlstrøm AP, Van As D, Bøggild CE and Johnsen SJ (2009) A new present-day temperature parameterization for Greenland. J. Glaciol., 55(189), 95105 (doi: 10.3189/002214309788608985)
Fortuin JPF and Oerlemans J (1990) Parameterization of the annual surface temperature and mass balance of Antarctica. Ann. Glaciol., 14, 7884
Fox Maule C, Purucker ME, Olsen N and Mosegaard K (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, 309(5733), 464467 (doi: 10.1126/science.1106888)
Franca LP and Frey S (1992) Stabilized finite element methods. II. The incompressible Navier–Stokes equations. Comput. Meth. Appl. Mech. Eng., 99(2–3), 209233 (doi: 10.1016/0045-7825(92)90041-H)
Franca LP, Frey S and Hughes TJR (1992) Stabilized finite element methods. I. Application to the advective–diffusive model.. Comput. Meth. Appl. Mech. Eng., 95(2), 221242
Greve R (1997) A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. London, Ser. A, 355(1726), 921974 (doi: 10.1098/rsta.1997.0050)
Greve R, Saito F and Abe-Ouchi A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann. Glaciol., 52(58), 2330 (doi: 10.3189/172756411797252068)
Griggs JA and Bamber JL (2009) A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: validation and error estimates. Cryosphere, 3(1), 113123 (doi: 10.5194/tc-3-113-2009)
Griggs JA and Bamber JL (2011) Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol., 57(203), 485498 (doi: 10.3189/002214311796905659)
Heroux HA and 15 others (2005) An overview of the Trilinos project. ACM Trans. Math. Softw., 31(3), 397423
Herzfeld UC, Wallin BF, Leuschen CJ and Plummer J (2011) An algorithm for generalizing topography to grids while preserving subscale morphologic characteristics – creating a glacier bed DEM for Jakobshavn trough as low-resolution input for dynamic ice-sheet models. Comput. Geosci., 37(11), 17931801 (doi: 10.1016/j.cageo.2011.02.021)
Herzfeld UC, Fastook J, Greve R, McDonald B, Wallin BF and Chen PA (2012) On the influence of outlet glaciers in Greenland bed topography on results from dynamic ice sheet models. Ann. Glaciol., 53(60 Pt 2), 281293 (doi: 10.3189/2012AoG60A061)
Holland DM, Thomas RH, de Young B, Ribergaard MH and Lyberth B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Howat IM, Smith BE, Joughin I and Scambos TA (2008) Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett., 35(17), L17505 (doi: 10.1029/2008GL034496)
Hutter K (1983) Theretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D. Reidel Publishing Co., Dordrecht; Terra Scientific Publishing Co., Tokyo
Huybrechts P (2008) Report of the Third EISMINT Workshop on Model Intercomparison. EISMINT Intercomparison Group, Grindelwald
Huybrechts P and de Wolde J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12(8), 21692188 (doi: 10.1175/1520- 0442(1999)012<2169:TDROTG>2.0.CO;2)
Jakobsson M and 7 others (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35(7), L07602 (doi: 10.1029/2008GL033520)
Johnson J and Fastook J (2002) Northern Hemisphere glaciation and its sensitivity to basal melt water. Quat. Int., 95–6, 6574
Joughin I, Tulaczyk S, Fahnestock M and Kwok R (1996) A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry. Science, 274(5285), 228230
Joughin I, Das SB, King MA, Smith BE, Howat IM and Moon T (2008) Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783 (doi: 10.1126/science.1153288)
Joughin I, Smith BE, Howat IM, Scambos T and Moon T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
Joughin I, Smith BE and Holland DM (2010) Sensitivity of 21st century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett., 37(20), L20502 (doi: 10.1029/2010GL044819)
Kleman J, Fastook J and Stroeven AP (2002) Geologically and geomorphologically-constrained numerical model of Laurentide Ice Sheet inception and build-up. Quat. Int., 95–96, 8798 (doi: 10.1016/S1040-6182(02)00030-7)
Larour E, Seroussi H, Morlighem M and Rignot E (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F1), F01022 (doi: 10.1029/2011JF002140)
Le Brocq AM, Payne AJ and Vieli A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2(2), 247260 (doi: 10.5194/essdd-3-195-2010)
Lemieux J-F and 6 others (2011) Implementation of the Jacobianfree Newton–Krylov method for solving the first-order ice sheet momentum balance. J. Comput. Phys., 230(17), 65316545 (doi: 10.1016/j.jcp.2011.04.037)
Levermann A, Albrecht T, Winkelmann R, Martin MA, Haseloff M and Joughin I (2012) Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. Cryosphere, 6(2), 273286 (doi: 10.5194/tc-6-273-2012)
Lipscomb WH, Bindschadler R, Bueler E, Holland D, Johnson J and Price S (2009) A Community Ice Sheet Model for sea level prediction. Eos, 90(3), 23
Little CM and 21 others (2007) Toward a new generation of ice sheet models. Eos, 88(52), 578579
MacAyeal DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res., 94(B4), 40714087
Martin MA and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. Cryosphere, 5(3), 727740 (doi: 10.5194/tc-5-727-2011)
Meinshausen M and 9 others (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1–2), 213241 (doi: 10.1007/s10584-011-0156-z)
Morland LW (1984) Thermo-mechanical balances of ice sheet flow. Geophys. Astrophys. Fluid Dyn, 29, 237266
Morland LW (1987) Unconfined ice-shelf flow. In Van der Veen CJ and Oerlemans J eds. Dynamics of the West Antarctic Ice Sheet. D. Reidel, Dordrecht, 99116
Morlighem M, Rignot E, Seroussi H, Larour E, Ben Dhia H and Aubry D (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
Näslund JO, Rodhe L, Fastook JL and Holmlund P (2003) New ways of studying ice sheet flow directions and glacial erosion by computer modelling – examples from Fennoscandia. Quat. Sci. Rev., 22(2–4), 245258 (doi: 10.1016/S0277-3791(02)00079-3)
Nitsche FO, Jacobs SS, Larter RD and Gohl K (2007) Bathymetry of the Amundsen Sea continental shelf: implications for geology, oceanography, and glaciology. Geochem. Geophys. Geosyst., 8(Q10), Q10009 (doi: 10.1029/2007GC001694)
Nowicki S and 30 others (2013a) Insights into spatial sensitivities of ice mass response to environmental changes from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res. Earth Surf., in press
Nowicki S and 30 others (2013b) Insights into spatial sensitivities of ice mass response to environmental changes from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res. Earth Surf., in press
Oppenheimer M and 23 others (2007) Report of the Workshop on Ice Sheet Modeling at the NOAA Geophysical Fluid Dynamics Laboratory, 8 January 2007. National Oceanic and Atmospheric Administration with Princeton University, Washington DC http://www.scar.org/researchgroups/physicalscience/icesheetrpt.pdf
Parizek BR and Alley RB (2004) Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quat. Sci. Rev., 23(9–10), 10131027 (doi: 10.1016/j.quascirev.2003.12.024)
Parizek BR and 10 others (in press) Dynamic (in)stability of Thwaites Glacier, West Antarctica. J. Geophys. Res.
Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382 (doi: 10.1029/2002JB002329)
Payne AJ, Vieli A, Shepherd A, Wingham DJ and Rignot E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31(23), L23401 (doi: 10.1029/2004GL021284)
Payne AJ, Holland PR, Shepherd AP, Rutt IC, Jenkins A and Joughin I (2007) Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112(C10), C10019 (doi: 10.1029/2006JC003733)
Pfeffer WT, Harper JT and O’Neel S (2008) Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894), 13401343 (doi: 10.1126/science.1159099)
Pollard D and DeConto RM (2012) Description of a hybrid ice sheet– shelf model, and application to Antarctica. Geosci. Model Dev. Discuss., 5(2), 10771134 (doi: 10.5194/gmdd-5-1077-2012)
Price SF, Payne AJ, Howat IM and Smith BE (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA (PNAS), 108(22), 89788983 (doi: 10.1073/pnas.1017313108)
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, Van den Broeke MR and Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502505 (doi: 10.1038/nature10968)
Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113128
Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A and Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401 (doi: 10.1029/2004GL020697)
Rignot E and Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 20202023 (doi: 10.1126/science.1070942)
Rignot E and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Saito F and Abe-Ouchi A (2004) Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a three-dimensional ice-sheet model. Ann. Glaciol., 39, 433438 (doi: 10.3189/172756404781814258)
Saito F and Abe-Ouchi A (2005) Sensitivity of Greenland ice sheet simulation to the numerical procedure employed for ice-sheet dynamics. Ann. Glaciol., 42, 331336 (doi: 10.3189/172756405781813069)
Saito F and Abe-Ouchi A (2010) Modelled response of the volume and thickness of the Antarctic ice sheet to the advance of the grounded area. Ann. Glaciol., 51(55), 4148 (doi: 10.3189/172756410791392808)
Sato T and Greve R (2012) Sensitivity experiments for the Antarctic ice sheet with varied sub-ice-shelf melting rates. Ann. Glaciol., 53(60 Pt 2), 221228 (doi: 10.3189/2012AoG60A042)
Scambos TA, Bohlander JA, Shuman CA and Skvarca P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402 (doi: 10.1029/2004GL020670)
Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Seddik H, Greve R, Zwinger T, Gillet-Chaulet F and Gagliardini O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58(209), 427440 (doi: 10.3189/2012JoG11J177)
Seroussi H and 6 others (2011) Ice flux divergence anomalies on 79north Glacier, Greenland. Geophys. Res. Lett., 38(9), L09501 (doi: 10.1029/2011GL047338)
Shapiro NM and Ritzwoller MH (2004) Inferring surface heat flux distribution guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223(1–2), 213224 (doi: 10.1016/j.epsl.2004.04.011)
Shepherd A, Wingham D and Rignot E (2004) Warm ocean is eroding West Antarctic Ice Sheet. Geophys. Res. Lett., 31(23), L23404 (doi: 10.1029/2004GL021106)
Shepherd A and 46 others (2012) A reconciled estimate of ice sheet mass balance. Science, 338(6111), 11831189
Solomon S and 7 others eds (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Tarasov L and Peltier WR (2002) Greenland glacial history and local geodynamic consequences. Geophys. J. Int., 150(1), 198229 (doi: 10.1046/j.1365-246X.2002.01702.x)
Thomas RH (1973) The creep of ice shelves: theory. J. Glaciol., 12,(64), 4553
Van de Berg WJ, Van den Broeke MR, Reijmer CH and Van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495)
Van der Veen CJ and ISMASS (2010) Ice sheet mass balance and sea level: a science plan. SCAR Rep. 38
Van Vuuren DP and 14 others (2011) The representative concentration pathways: an overview. Climatic Change, 109(1–2), 531 (doi: 10.1007/s10584-011-0148-z)
Vaughan D. G., Holt J. W., and Blankenship D. D. (2007), West Antarctic links to sea level estimation, Eos Trans. AGU, 88(46), 485485 (doi:10.1029/2007EO460001)
Vermeer M and Rahmstort S (2009) Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA (PNAS), 106(51), 21 52721 532 (doi: 10.1073/pnas.0907765106)
Wang W, Li J and Zwally HJ (2012) Dynamic inland propagation of thinning due to ice loss at the margins of the Greenland ice sheet. J. Glaciol., 58(210), 734740 (doi: 10.3189/2012JoG11J187)
Weertman J (1974) Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13(67), 311
Williams MJM, Grosfeld K, Warner RC, Gerdes R and Determann J (2001) Ocean circulation and ice–ocean interaction beneath the Amery Ice Shelf, Antarctica. J. Geophys. Res., 106(C10), 22 38322 399 (doi: 10.1029/2000JC000236)
Winkelmann R and 6 others (2011) The Potsdam Parallel Ice Sheet Model (PISM-PIK) – Part 1: Model description. Cryosphere, 5(3), 715726 (doi: 10.5194/tc-5-715-2011)
Winkelmann R, Levermann A, Frieler K and Martin MA (2012) Uncertainty in future solid ice discharge from Antarctica. Cryos. Discuss., 6(1), 673714 (doi: 10.5194/tcd-6-673-2012)
Zwally HJ, Abdalati W, Herring T, Larson K, Saba J and Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222 (doi: 10.1126/science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 82 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 13th December 2017. This data will be updated every 24 hours.