Skip to main content
×
×
Home

Identifying annual peaks in dielectric profiles with a selection curve

  • Kenneth C. McGwire (a1), Kendrick C. Taylor (a1), John R. Banta (a1) and Joseph R. McConnell (a1)
Abstract

A novel ‘selection curve’ method is developed to interpret annual layers in the West Antarctic ice sheet (WAIS) Divide ice core based on dielectric properties (DEP). Because dielectric measurements are non-contact and represent the integrated response of the ice volume, they are particularly useful for the brittle zone of the core. Seasonal differences in ice chemistry create an annual signal in DEP, though multiple peaks of varying strength within a year may complicate the interpretation of annual layers. The selection curve algorithm uses a spline curve whose shape selects successive annual peaks in plots of DEP. This spline curve was scaled to the average annual-layer thickness at a given depth, where the layer thickness was best estimated using the fast Fourier transform (FFT) power spectrum within a sliding 10 m window. To explore the accuracy and stability of the method, several spline curves were generated from varying lengths of calibration data taken from multiple depths in the WAIS core. Using 50 m of manually interpreted calibration data, the selection curve method matched a manual interpretation throughout the entire 1200 m dataset to within 2% root-mean-square error (RMSE). This method is equally applicable to glaciochemical and other time/depth series measurements.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Identifying annual peaks in dielectric profiles with a selection curve
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Identifying annual peaks in dielectric profiles with a selection curve
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Identifying annual peaks in dielectric profiles with a selection curve
      Available formats
      ×
Copyright
References
Hide All
Anklin, M., Bales, R.C., Mosley-Thompson, E. and Steffen, K.. 1998. Annual accumulation at two sites in northwest Greenland during recent centuries. J. Geophys. Res., 103(D22), 28,77528,783.
Banta, J.R. and McConnell, J.R.. 2007. Annual accumulation over recent centuries at four sites in central Greenland. J. Geophys. Res., 112(D10), D10114. (10.1029/2006JD007887.)
Banta, J.R., McConnell, J.R., Frey, M.M., Bales, R.C. and Taylor, K.. 2008. Spatial and temporal variability in snow accumulation at the West Antarctic Ice Sheet Divide over recent centuries. J. Geophys. Res., 113(D23), D23102. (10.1029/2008JD010235.)
Cole-Dai, J., Mosley-Thompson, E. and Thompson, L.G.. 1997. Annually resolved Southern Hemisphere volcanic history from two Antarctic ice cores. J. Geophys. Res., 102(D14), 16,76116,771.
Curran, M.A.J., van Ommen, T.D. and Morgan, V.. 1998. Seasonal characteristics of the major ions in the high-accumulation Dome Summit South ice core, Law Dome, Antarctica. Ann. Glaciol., 27, 385390.
Kaczmarska, M. and 10 others. 2004. Accumulation variability derived from an ice core from coastal Dronning Maud Land, Antarctica. Ann. Glaciol., 39, 339345.
Karlöf, L., Øigård, T.A., Godtliebsen, F., Kaczmarska, M. and Fischer, H.. 2005. Statistical techniques to select detection thresholds for peak signals in ice-core data. J. Glaciol., 51(175), 655662.
Kochanek, D.H.U. and Bartels, R.H.. 1984. Interpolating splines with local tension, continuity, and bias control. ACM SIG-GRAPH Comput. Graph., 18(3), 3341.
McConnell, J.R. and Edwards, R.. 2008. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl Acad. Sci. USA (PNAS), 105(34), 12,14012,144.
McConnell, J.R., Lamorey, G.W., Lambert, S.W. and Taylor, K.C.. 2002. Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ. Sci. Technol., 36(1), 711.
McConnell, J.R. and 9 others. 2007. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science, 317(5843), 13811384.
McGwire, K.C., McConnell, J.R., Alley, R.B., Banta, J.R., Hargreaves, G.M. and Taylor, K.C.. 2008. Dating annual layers of a shallow Antarctic ice core with an optical scanner. J. Glaciol., 54(188), 831838.
Moore, J.C., Wolff, E.W., Clausen, H.B. and Hammer, C.U.. 1992. The chemical basis for the electrical stratigraphy of ice. J. Geophys. Res., 97(B2), 18871896.
Moore, J.C., Wolff, E.W., Clausen, H.B., Hammer, C.U., Legrand, M. and Fuhrer, K.. 1994. Electrical response of the Summit-Greenland ice core to ammonium, sulphuric acid, and hydrochloric acid. J. Geophys. Res., 21(7), 565568.
Rasmussen, S.O., Seierstad, I.K., Andersen, K.K., Bigler, M., Dahl-Jensen, D. and Johnsen, S.J.. 2008. Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat. Sci. Rev., 27(1–2), 1828.
Sigg, A., Fuhrer, K., Anklin, M., Staffelbach, T. and Zurmühle, D.. 1994. A continuous analysis technique for trace species in ice cores. Environ. Sci. Technol., 28(2), 204209.
Smith, S.W. 2002. Digital signal processing: a practical guide for engineers and scientists. Burlington, MA, Elsevier.
Vinther, B.M. and 12 others. 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res., 111(D13), D13102. (10.1029/2005JD006921.)
Wilhelms, F. 2005. Explaining the dielectric properties of firn as a density-and-conductivity mixed permittivity (DECOMP). Geophys. Res. Lett., 32(16), L16501. (10.1029/2005GL022808.)
Wilhelms, F., Kipfstuhl, J., Miller, H., Heinloth, K. and Firestone, J.. 1998. Precise dielectric profiling of ice cores: a new device with improved guarding and its theory. J. Glaciol., 44(146), 171174.
Wolff, E.W., Moore, J.C., Clausen, H.B., Hammer, C.U., Kipfstuhl, J. and Fuhrer, K.. 1995. Long-term changes in the acid and salt concentrations of the Greenland Ice Core Project ice core from electrical stratigraphy. J. Geophys. Res., 100(D8), 16,24916,263.
Yapo, P.O., Gupta, H.V. and Sorooshian, S.. 1998. Multi-objective global optimization for hydrologic models. J. Hydrol., 204(1–4), 8397.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 54 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 18th June 2018. This data will be updated every 24 hours.