Skip to main content
×
Home

Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard

  • YONGMEI GONG (a1) (a2), THOMAS ZWINGER (a3), STEPHEN CORNFORD (a4), RUPERT GLADSTONE (a2) (a5), MARTINA SCHÄFER (a2) (a6) and JOHN C. MOORE (a2) (a7)...
Abstract
ABSTRACT

We assess the importance of basal boundary conditions for transient simulations of Basin 3, Austfonna ice cap between January 1995 and December 2011 and for the surge starting in 2012 by carrying out simulations with the full-Stokes model Elmer/Ice and the vertically-integrated model BISICLES. Time-varying surface mass-balance data from the regional climate model HIRHAM5 are downscaled according to elevation. Basal friction coefficient is varied through time by interpolating between two data-constrained inversions of surface velocity fields, from 1995 and 2011. Evolution of the basal boundary condition appears to be much more important for mass discharge and the dynamic response of the fast flowing unit in Basin 3 than either model choice or the downscaling method for the surface mass balance. In addition, temporally linear extrapolation of the evolution of basal friction coefficient beyond the 2011 distribution could not reproduce the expansion of the acceleration observed in southern Basin 3 between January 2012 and June 2013. This implies that changes in basal friction patterns, and in turn basal processes that are not currently represented in either model, are among the most important factors for the 2012 acceleration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Importance of basal boundary conditions in transient simulations: case study of a surging marine-terminating glacier on Austfonna, Svalbard
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: John C. Moore <john.moore.bnu@gmail.com>
References
Hide All
Åström JA and 6 others (2013) A particle based simulation model for glacier dynamics. Cryosphere, 7, 15911602 (doi: 10.5194/tc-7-1591-2013)
Bamber J, Krabill W, Raper V and Dowdeswell J (2004) Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard. Geophys. Res. Lett., 31, L12402 (doi: 10.1029/2004GL019667)
Christensen O and 6 others (2007) The HIRHAM regional climate model Version 5 (β) . Danish Climate Centre, Danish Meteorological Institute Technical Report no. 06-17
Clarke G (1976) Thermal regulation of glacier surging. J. Glaciol., 16, 231250
Cornford S and 8 others (2013) Adaptive mesh, finite volume modeling of marine ice sheets. J. Comput. Phys., 232, 529549 (doi: 10.1016/j.jcp.2012.08.037)
Dowdeswell J and 5 others (1986) Digital mapping of the Nordaustlandet ice caps from airborne geophysical investigations. Ann. Glaciol., 8, 5158
Dowdeswell J, Unwin B, Nuttall A and Wingham D (1999) Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry. Earth Planet. Sci. Lett., 167, 131140 (doi: 10.1016/S0012-821X(99)00034-5)
Dowdeswell J, Benham T, Strozzi T and Hagen JO (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J. Geophys. Res., 113, 112 (doi: 10.1029/2007JF000905)
Dunse T (2011) Glacier dynamics and subsurface classification of Austfonna, Svalbard: Inferences from observations and modelling. (Dissertation submitted for the degree of Philosophiae Doctor (PhD), University of Oslo)
Dunse T and 5 others (2009) Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR. Ann. Glaciol., 50, 155162
Dunse T, Greve R, Schuler T and Hagen JO (2011) Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard. J. Glaciol., 57, 247259 (doi: 10.3189/002214311796405979)
Dunse T, Schuler T, Hagen JO and Reijmer C (2012) Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements. Cryosphere, 6, 453466 (doi: 10.5194/tc-6-453-2012)
Dunse T and 5 others (2015) Glacier-surge mechanisms promoted by a hydro- thermodynamic feedback to summer melt. Cryosphere, 9, 197215 (doi: 10.5194/tc-9-197-2015)
Edwards T and 12 others (2014) Effect of uncertainty in surface mass balance–elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere, 8, 195208 (doi: 10.5194/tc-8-195-2014)
Frey PJ (2001) YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure. RT-0252, INRIA
Gagliardini O, Cohen D, Raback P and Zwinger T (2007) Finite-element modeling of subglacial cavities and related law. J. Geophys. Res., 112 (doi: 1029/2006JF000576)
Gagliardini O and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6, 12991318 (doi: 10.5194/gmd-6-1299-2013)
Gillet-Chaulet F and 8 others (2012) Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere, 6, 15611576 (doi: 10.5194/tc-6-1561-2012)
Gladstone R and 7 others (2014) Importance of basal processes in simulations of a surging Svalbard outlet glacier. Cryosphere, 8, 13931405 (doi: 10.5194/tc-8-1393-2014)
Gong Y, Cornford S and Payne A (2014) Modelling the response of the Lambert Glacier–Amery Ice Shelf system, East Antarctica, to uncertain climate forcing over the 21st and 22nd centuries. Cryosphere, 8, 10571068 (doi: 10.5194/tc-8-1057-2014)
Helsen M, van de Wal R, van de Broeke M, van de Berg W and Oerlemens J (2012) Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet. Cryosphere, 6, 255272 (doi: 10.5194/tc-6-255-2012)
Ignatieva IY and Macheret YY (1991) Evolution of Nordaustlandset ice caps in Svalbard under climate warming. IAHS Publ., 208 (Symposium at St. Petersburg 1990 – Glacier-Ocean-Atmosphere Interactions), 301312
Jakobsson M and 7 others (2008) An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602
Kamb B (1970) Sliding motion of glaciers: theory and observation. Rev. Geophys., 8, 673728
Lefauconnier B and Hagen JO (1991) Surging and calving glaciers in Eastern Svalbard. Nor. Polarinst. Meddelelser., 116, 130
MacAyeal D (1993) A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39, 9198
McMillan M and 14 others (2014) Rapid dynamic activation of a marine-based Arctic ice cap. Geophys. Res. Lett., 41, 89028909
Möller M and 7 others (2011) Climatic mass balance of the ice cap Vestfonna, Svalbard: a spatially distributed assessment using ERA-Interim and MODIS data. J. Geophys. Res., 116, F03009 (doi: 10.1029/2010JF001905)
Moholdt G and Kääb A (2012) A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICES at laser altimetry. Polar Res., 31, 18460 (doi: dx.doi.org/10.3402/polar.v31i0.18460)
Moholdt G, Hagen JO, Eiken T and Schuler T (2010) Geometric changes and mass balance of the Austfonna ice cap, Svalbard. Cryosphere, 4, 2134 (doi: 10.5194/tc-4-21-2010)
Moore J, Grinsted A, Zwinger T and Jevrejeva S (2013) Semiempirical and process-based global sea level projections. Rev. Geophys., 51 (doi: 8755-1209/13/10.1002/rog.20015)
Morlighem M and 5 others (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37 (doi: 10.1029/2010GL043853)
Nick F, Vieli A, Howat I and Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci., 2, 110114 (doi: 10.1038/NGEO394)
Nye JF (1970) Glacier sliding without cavitation in a linear viscous approximation. Proc. R. Soc. London A., 315, 381403
Pattyn F (2003) A new three-dimensional higher-order thermomechanical ice sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108 (doi: 1 0.1029/2002JB002329)
Pattyn F and 20 others (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM). Cryosphere, 2, 95108 (doi: 10.5194/tc-2-95-2008)
Pattyn F and 27 others (2013) Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59, 410422 (doi: 10.3189/2013JoG12J129)
Phillips T, Rajaram H and Steffen K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37, L20503 (doi: 10.1029/2010GL044397)
Phillips T, Rajaram H, Colgan W, Steffen K and Abdalati W (2013) Evaluation of cryo-hydrologic warming as an explanation for increased ice velocities in the wet snow zone and Sermeq Avannarleq and West Greenland. J. Geophys. Res.: Earth., 118, 12411256 (doi: 10.1002/jgrf.20079)
Pinglot J, Hagen JO, Melvold K, Eiken T and Vingent C (2001) A mean net accumulation pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet, Svalbard. J. Glaciol., 47, 555566 (doi: 10.3189/172756501781831800)
Rae J and 14 others (2012) Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models. Cryosphere, 6, 12751294 (doi: 10.5194/tc-6-1275-2012)
Schäfer M and 6 others (2014) Assessment of heat sources on the control of fast flow of Vestfonna ice cap, Svalbard. Cryosphere, 8, 19511973 (doi: 10.5194/tc-8-1951-2014)
Schäfer M, Möller M, Zwinger T and Moore J (2015) Dynamic modelling of future glacier changes: mass balance/elevation feedback in projections for the Vestfonna ice cap, Nordaustlandet, Svalbard. J. Glaciol., 61, 11211136 (doi: 10.3189/2015JoG14J184)
Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability and hysteresis. J. Geophys. Res. Earth Surf., 112 (doi: 10.1029/2006JF000664)
Schoof C and Hindmarsh R (2010) Thin-film flows with wall slip: an asymptotic analysis of higher order Glacier flow models. Q. J. Mech. Appl. Math., 63, 73114 (doi: 10.1093/qjmam/hbp025)
Schuler T and 5 others (2007) Calibrating a surface mass balance model for the Austfonna ice cap, Svalbard. Ann. Glaciol., 46, 241248 (doi: 10.3189/172756407782871783)
Schuler T, Dunse T, Østby T and Hagen JO (2014) Meteorological conditions on an Arctic ice cap – 8 years of automatic weather station data from Austfonna, Svalbard. Int. J. Climatol., 34, 20472058 (doi: 10.1002/joc.3821)
Schytt V (1964) Scientific results of the Swedish Glaciological Expedition to Nordaustlandet, Spitsbergen, 1957 and 1958. Geogr. Ann., 46, 243281 (doi: 10.2307/520382)
Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data, In Proceedings 1968 23rd ACM National Conference, ACM, New York 517524. (doi: 10.1145/800186.81061)
Taurisano A and 6 others (2007) The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling. Poler Res., 26, 713 (doi: 10.1111/j.1751-8369.2007.00004.x)
Tulaczyk SM, Kamb B and Engelhardt HF (2000) Basal mechanics of Ice Stream B, West Antarctica. II. Undrained-plastic bed model. J. Geophys. Res., 105(B1), 483494
Vasilenko E, Navarro F, Dunse T, Eiken T and Hagen J (2010) New low-frequency radio-echo soundings of Austfonna ice cap, Svalbard. In Ahlstrøm A and Sharp M, eds. The Dynamics and Mass Budget of Arctic Glaciers. Extended abstracts. Work-shop and GLACIODYN (IPY) meeting, 16–19 February 2009, Dan. Grønl. Geol. Unders. Rapp., 127. IASC Working Group on Arctic Glaciology, GEUS, Copenhagen
Weertman J (1957) On the sliding of glaciers. J. Glaciol., 3, 3338
Zagorodnov VS, Sin'kevich SA and Arkhipov SM (1990) Gidrotermicheskiy rezhim ledorazdel'noy oblasti Vostochnogo ledyanogo polya, o. Severo-Vostochnaya Zemlya [Hydrothermal regime of the ice-divide area of Austfonna, Nordaustlandet]. Mater. Glyatsiol. Issled., 68, 133141
Zagorodnov VS, Nagornov O and Thompson LG (2006) Influence of air temperature on a glacier's active-layer temperature. Ann. Glaciol., 43, 285287
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 40
Total number of PDF views: 348 *
Loading metrics...

Abstract views

Total abstract views: 497 *
Loading metrics...

* Views captured on Cambridge Core between 20th December 2016 - 24th November 2017. This data will be updated every 24 hours.