Skip to main content
×
×
Home

Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession

  • CAROLINE AUBRY-WAKE (a1) (a2), DORIAN ZÉPHIR (a3), MICHEL BARAER (a4), JEFFREY M. McKENZIE (a5) and BRYAN G. MARK (a6)...
Abstract

Tropical glaciers constitute an important source of water for downstream populations. However, our understanding of glacial melt processes is still limited. One observed process that has not yet been quantified for tropical glaciers is the enhanced melt caused by the longwave emission transfer. Here, we use high-resolution surface temperatures obtained from the thermal infrared imagery of the Cuchillacocha Glacier, in the Cordillera Blanca, Peru in June 2014 to calculate a margin longwave flux. This longwave flux, reaching the glacier margin from the adjacent exposed rock, varies between 81 and 120 W m−2 daily. This flux is incorporated into a physically-based melt model to assess the net radiation budget at the modeled glacier margin. The simulation results show an increase in the energy available for melt by an average of 106 W m−2 during the day when compared with the simulation where the LW margin flux is not accounted for. This value represents an increase in ablation of ~1.7 m at the glacier margin for the duration of the dry season. This study suggests that including the quantification of the glacier margin longwave flux in physically-based melt models results in an improved assessment of tropical glacier energy budget and meltwater generation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Caroline Aubry-Wake <caroline.aubrywake@usask.ca>
References
Hide All
Abtew, W and Malesse, A (2013) Evaporation and evapotranspiration. Springer, New York
Arnold, NS, Willis, IC, Sharp, MJ, Richards, KS and Lawson, WJ (1996) A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland. J. Glaciol., 42(140), 7789
Aubry-Wake, C and 6 others (2015) Measuring glacier surface temperatures with ground-based thermal infrared imaging. Geophys. Res. Lett., 42, 84898497 (doi: 10.1002/2015GL065321)
Baraer, M and 8 others (2012) Glacier recession and water resources in Peru's Cordillera Blanca. J. Glaciol., 58, 134150 (doi: 10.3189/2012JoG11J186)
Barnett, TP, Adam, JC and Lettenmaier, DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 (7066) (doi: 10.1038/nature04141)
Benn, DI and Evans, DJA (2010) Glaciers and glaciation, 2nd edn. Hodder Education, London
Brock, BW, Mihalcea, C, Kirkbride, MP, Diolaiuti, G, Cutler, ME J, Smiraglia, C (2010) Meteorology and surface energy fluxes in the 2005–2007 ablation seasons at the Miage debris-covered glacier, Mont Blanc Massif, Italian Alps. J. Geophys. Res., 115(D9), D09106 (doi: 10.1029/2009JD013224)
Brutsaert, W (1975) On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11, 742744
Buri, P, Pellicciotti, F, Steiner, J, Miles, E and Immerzeel, W (2016) A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Ann. Glaciol., 57(71), 199210 (doi: 10.3189/2016aog71a059)
Chinn, T (1987) Accelerated ablation at a Glacier Ice-Cliff Margin, Dry Valleys. Arct. Antarct. Alp. Res., 19(1), 7180
Cuffey, KM and Paterson, SB (2010) The physics of glaciers. Butterworth-Heinemann/Elsevier, Burlington, MA
Delclaux, F, Coudrain, A and Condom, T (2007) Evaporation estimation on Lake Titicaca: a synthesis review and modelling. Hydrol. Process., 21, 16641677 (doi: 10.1002/hyp.6360)
Favier, V, Wagnon, P and Ribstein, P (2004a) Glaciers of the outer and inner tropics: a different behaviour but a common response to climatic forcing. Geophys. Res. Lett., 31, L16403 (doi: 10.1029/2004GL020654)
Favier, V, Wagnon, P, Chazarin, JP, Maisincho, L and Coudrain, A (2004b) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res. Atmos., 109 (18) (doi: 10.1029/2003JD004359)
Fierz, C, Pluss, C and Martin, E (1997) Modelling the snow cover in a complex alpine topography. Ann. Glaciol., 25, 312316
Francou, B, Vuille, M, Favier, V and Cáceres, B (2004) New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J. Geophys. Res., 109, D18106 (doi: 10.1029/2003JD004484)
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere, 7(4), 12631286 (doi: 10.5194/tc-7-1263-2013)
Garnier, B and Ohmura, A (1968) A method of calculating the direct shortwave radiation income on slopes. J. Appl. Meteor., 7, 796800
Gratton, DJ, Howarth, PJ and Marceau, DJ (1993) Using Landsat-5 thematic mapper and digital elevation data to determine the net radiation field of a mountain glacier. Remote Sen., Environ., 43(3), 315331
Gurgiser, W, Mölg, T, Nicholson, L and Kaser, G (2013a) Mass balance model parameter transferability on a tropical glacier. J. Glaciol., 59, 845858 (doi: 10.3189/2013JoG12J226)
Gurgiser, W, Marzeion, B, Nicholson, L, Ortner, M and Kaser, G (2013b). Modeling energy and mass balance of Shallap Glacier, Peru. Cryosphere, 7, 17871802 (doi: 10.5194/tc-7-1787-2013)
Han, H, Wang, J, Wei, J and Liu, S (2010) Backwasting rate on debris covered Koxkar glacier, Tuomuer mountain, China. J. Glaciol., 56, 287296 (doi: 10.3189/002214310791968430)
Hannah, DM, Gurnell, AM and McGregor, GR (2000) Spatio-temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier. Int. J. Climatol. 20, 733758
Hock, R (2005) Glacier melt: a review of processes and their modelling. Prog. Phys. Geogr., 29, 362391 (doi: 10.1191/0309133305pp453ra)
Hock, R and Noetzli, C (1997) Areal melt and discharge modelling of Storglaciären, Sweden. Ann. Glaciol., 24, 211217
Jiskoot, H and Mueller, MS (2012) Glacier fragmentation effects on surface energy balance and runoff: field measurements and distributed modelling. Hydrol. Process., 26(12), 18611875
Johnson, GT and Watson, ID (1984) The determination of view-factors in urban canyons. J. Appl. Meteorol. Climatol., 23 (2), 329335
Kaser, G and Osmaston, H (2002) Tropical glaciers. Cambridge University Press, Cambridge
Kustas, WP, Rango, A and Uijlenhoet, R (1994) A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res., 30(5), 15151527 (doi: 10.1029/94WR00152)
Lewis, KJ, Fountain, A and Dana, GL (1998) Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Ann. Glaciol., 27, 603609
Machguth, H, Purves, RS, Oerlemans, J, Hoelzle, M and Paul, F (2008) Exploring uncertainty in glacier mass balance modelling with Monte Carlo simulation. Cryosphere, 2, 191204
Marks, D and Dozier, J (1979) A clear-sky longwave radiation model for remote alpine areas. J. Arch. Met. Geoph. Biokl. B., 27, 159178
Mölg, T and Hardy, DR (2004) Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J. Geophys. Res., 109, D16104 (doi: 10.1029/2003JD004338)
Mölg, T, Cullen, NJ, Hardy, DR, Kaser, G and Klok, L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int. J. Climatol., 28, 881892 (doi: 10.1002/joc.1589)
Nicholson, LI and 5 others (2010) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison to central Chile. Ann. Glaciol., 50(53), 111118 (doi: 10.3189/172756410790595787)
Nicholson, LI, Prinz, R, Mölg, T and Kaser, G (2013) Micrometeorological conditions and surface mass and energy fluxes on Lewis Glacier, Mt Kenya, in relation to other tropical glaciers. Cryosphere, 7, 12051225 (doi: 10.5194/tc-7-1205-2013)
Ohta, T (1994) A distributed snowmelt prediction model in mountain areas based on an energy balance method. Ann. Glaciol., 19, 107113
Olyphant, G (1986) Longwave radiation in mountainous areas and its influence on the energy balance of alpine snowfields. Water Resourc. Res., 22, 6266
Pellicciotti, F, Ragettli, S, Carenzo, M and McPhee, J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci. Total Environ., 493, 11971210 (doi: 10.1016/j.scitotenv.2013.10.055)
Pellicciotti, F, Stephan, C, Miles, E, Immerzeel, WW and Bolch, T (2015) Mass balance changes of debris-covered glaciers in the Langtang Himal in Nepal between 1974 and 1999. J. Glaciol., 61, 373386 (doi: 10.3189/2015JoG13J237)
Plüss, C and Ohmura, A (1997) Longwave radiation on snow-covered mountainous surfaces. J. Appl. Meteor., 36, 818824
Reid, T and Brock, B (2014) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol., 60(219), 313 (doi: 10.3189/2014JoG13J045)
Rigaudiere, P, Ribstein, P, Francou, B, Pouyaud, B and Saravia, R (1995) Un modèle hydrologique du glacier Zongo. Coll. «INFORME». La Paz, Bolivia: L'institut Francais de Recherche Scientifique pour le Développement en Coopération
Sakai, A, Nakawo, M and Fujita, K (1998) Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bull. Glacier Res., 16, 5766
Sakai, A, Nakawo, M and Fujita, K (2002) Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alp. Res., 34(1), 1219 (doi: 10.2307/1552503)
Sicart, JE, Pomeroy, JW, Essery, RHL and Bewley, D (2006) Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments. Hydrol. Process., 20, 36973708 (doi: 10.1002/hyp.6383)
Sicart, JE, Hock, R, Ribstein, P, Litt, M and Ramirez, E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J. Geophys. Res., 116, D13105 (doi: 10.1029/2010JD015105)
Somers, LD and 10 others (2016) Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol. Process., 30, 29152929 (doi: 10.1002/hyp.10912)
Steiner, J and 5 others (2015) Modelling ice cliff backwasting on a debris covered glacier in the Nepalese Himalayas. J. Glaciol., 61(229), 889907 (doi: 10.3189/2015JoG14J194)
Wagnon, P, Ribstein, P, Francou, B and Pouyaud, B (1999a) Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J. Geophys. Res., 104(D4), 39073923 (doi: 10.1029/1998JD200011)
Wagnon, P, Ribstein, P, Kaser, G and Berton, P (1999b) Energy balance and runoff seasonality of a Bolivian glacier. Glob. Planet.Change, 22 (1–4), 4958 (doi: 10.1016/S0921-8181(99)00025-9)
Wigmore, O and Mark, B (2017) Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. Cryosphere, 11, 24632480 (doi: 10.5194/tc-11-2463-2017)
Winkler, M and 5 others (2009) Measured and modelled sublimation on the tropical Glaciar Artesonraju, Perú. Cryosphere, 3, 2130 (doi: 10.5194/tc-3-21-2009)
Winkler, M and 5 others (2010) Land-based marginal ice cliffs: focus on Kilimanjaro. Erdkunde, 64(2), 179193 (doi: 10.3112/erdkunde.2010.02.05)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Aubry-Wake et al supplementary material
Figure S1 and Tables S1-S3

 Word (460 KB)
460 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed