Skip to main content Accessibility help

Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru



Accurate quantification of rates of glacier mass loss is critical for managing water resources and for assessing hazards at ice-clad volcanoes, especially in arid regions like southern Peru. In these regions, glacier and snow melt are crucial dry season water resources. In order to verify previously reported rates of ice area decline at Nevado Coropuna in Peru, which are anomalously rapid for tropical glaciers, we measured changes in ice cap area using 259 Landsat images acquired from 1980 to 2014. We find that Coropuna Ice Cap is presently the most extensive ice mass in the tropics, with an area of 44.1 km2, and has been shrinking at an average area loss rate of 0.409 km2 a−1 (~0.71% a−1) since 1980. Our estimated rate of change is considerably lower than previous studies (1.4 km2 a−1 or ~2.43% a−1), but is consistent with other tropical regions, such as the Cordillera Blanca located ~850 km to the NW (~0.68% a−1). Thus, if glacier recession continues at its present rate, our results suggest that Coropuna Ice Cap will likely continue to contribute to water supply for agricultural and domestic uses until ~2120, which is nearly 100 years longer than previously predicted.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: William Kochtitzky <>


Hide All
Albert, TH (2002) Evaluation of remote sensing techniques for ice-area classification applied to the tropical Quelccaya ice cap, Peru. Polar Geogr., 26(3;3), 210226.
Ames, A, Evangelista, P, Valverde, A and Zúñiga, J (1988) Inventario de Glaciares del Perú. Inventario de Glaciares del Perú part 1. Consejo Nacional de Ciencia y Tecnologia, Huaraz, Peru.
Baraer, M and 8 others (2012) Glacier recession and water resources in Peru's Cordillera Blanca. J. Glaciol., 58(207), 134150 (doi: 10.3189/2012JoG11J186)
Björnsson, H (1988) Hydrology of ice caps in volcanic regions. Societas Scientarium Islandica, University of Iceland, Reykjavík.
Ceballos, JL and 6 others (2006) Fast shrinkage of tropical glaciers in Colombia. Ann. Glaciol., 43, 194201 (doi: 10.3189/172756406781812429)
Cook, SJ, Kougkoulos, I, Edwards, LA, Dortch, J and Hoffmann, D (2016) Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere, 10(5), 2399. (doi: 10.5194/tc-2016–140)
Cullen, NJ and 5 others (2013) A century of ice retreat on Kilimanjaro; the mapping reloaded. Cryosphere [Online], 7(2;2), 419431 (doi: 10.5194/tc-7–419-2013)
Delgado-Granados, H and 7 others (2015) Chapter 17. Hazards at Ice-Clad Volcanoes: phenomena, processes, and examples from Mexico, Columbia, Ecuador, and Chile. In Haeberli, W and Whiteman, C, eds. Snow and Ice-related hazards, risks and disasters. Elsevier, Amsterdam, 607
de Silva, SL and Francis, PW (1990) Potentially active volcanoes of Peru; observations using Landsat thematic mapper and space shuttle imagery. Bull. Volcanol., 52(4;4), 286301
Dozier, J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ., 28, 922 (doi: 10.1016/0034-4257(89)90101-6)
Forget, ME, Thouret, JC, Kuentz, A and Fontugne, M (2008) Héritages glaciaires, périglaciaires et évolution récente: le cas du Nevado Coropuna (Andes centrales, sud du Pérou) (French). Géomorphologie (Paris), (2), 113132
Frenierre, JL and Mark, BG (2014) A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog. Phys. Geogr., 38(2), 173200 (doi: 10.1177/0309133313516161)
Hall, DK, Riggs, GA and Salomonson, V V (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ., 54(2), 127140 (doi: 10.1016/0034-4257(95)00137-P)
Instituto Nacional de Estadistica e Informatico (INEI) (2007) Censos Nacionales 2007 XI Poblaciíon y Vi de Vivienda.
Kargel, JS (2014) Scientific and public perceptions about the importance of fluctuations in glaciers and ice sheets. In Kargel, JS ed. Global land Ice measurements from space. Springer-Verlag, Berlin, xixxvii (doi: 10.1007/978-3-540-7)
Kaser, G (1999) A review of the modern fluctuations of tropical glaciers. Glob. Planet. Change, 22(1-4-4), 93103.
Kienholz, C, Hock, R and Arendt, AA (2013) Instruments and methods a new semi-automatic approach for dividing glacier complexes into individual glaciers. J. Glaciol., 59(217), 925937 (doi: 10.3189/2013JoG12J138)
Kienholz, C, Rich, JL, Arendt, AA and Hock, R (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere, 8(2), 503519 (doi: 10.5194/tc-8-503-2014)
Klein, AG and Kincaid, JL (2006) Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. J. Glaciol., 52(176;176), 6579 (doi: 10.3189/172756506781828818)
Lasage, R and 5 others (2015) A stepwise, participatory approach to design and implement community based adaptation to drought in the Peruvian Andes. Sustainability, 7(2), 17421773 (doi: 10.3390/su7021742)
Magrin, G and 7 others (2014) Central and South America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Fiel]. (doi: 10.2134/jeq2008.0015br)
Major, JJ and Newhall, CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods; a global review. Bull. Volcanol., 52(1;1), 127.
Mark, BG and Seltzer, GO (2003) Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. J. Glaciol., 49(165), 271281. (doi: 10.3189/172756503781830746)
Ministerio del Ambiente del Perú (2010) El Perú y el Cambio Climático Segunda Comunicación Nacional del Perú: a la Convención Marco de las Naciones Unidas sobre Cambio Climático 2010: Impresiones & Ediciones Aguilar S.A.C.
National Aeronautics and Space Administration (1998) Landsat 7 science data users handbook. NASA, Greenbelt, ML
Nunez-Juarez, S and Valenzuela-Ortiz, G (2001) Mapa Preliminar de Amenaza Volcanica Potencial del Nevado Coropuna; Estudios de Riesgos Volcanicos en el Sur del Peru. Bol. – Inst. Geol. Mineria, Ser. C Geodin. Ing. Geol., 25, 103.
Paul, F (2000) Evaluation of different methods for glacier mapping using Landsat TM. EARSeL eProc., 1(1;1), 239245 (doi: 10.1080/10106040008542173)
Paul, F (2002) Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 thematic mapper and Austrian Glacier Inventory data. Int. J. Remote Sens., 23(4;4), 787799 (doi: 10.1080/01431160110070708)
Paul, F and Andreassen, LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM + data: challenges and change assessment. J. Glaciol., 55(192), 607618. (doi: 10.3189/002214309789471003)
Paul, F, Huggel, C, Kääb, A, Kellenberger, T and Maisch, M (2002) Comparison of TM-derived glacier areas with higher resolution data sets. In EARSeL Workshop on remote sensing of land ice and snow, Bern, Vol. 11, No. 13.3.
Paul, F and 19 others (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol., 54(63), 171182 (doi: 10.3189/2013AoG63A296)
Peduzzi, P, Herold, C and Silverio, W (2010) Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). Cryosphere 4(3) (doi: 10.5194/tc-4-313-2010)
Pierson, TC (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes; constraints for debris-flow models. J. Volcanol. Geotherm. Res., 66(1-4-4), 283294.
Rabatel, A, and 10 others (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 7(1), 81102 (doi: 10.5194/tc-7-81-2013)
Racoviteanu, AE, Manley, WF, Arnaud, Y and Williams, MW (2007) Evaluating digital elevation models for glaciologic applications; an example from Nevado Coropuna, Peruvian Andes. Glob. Planet. Change, 59(1-4-4), 110125 (doi: 10.1016/j.gloplacha.2006.11.036)
Racoviteanu, AE, Paul, F, Raup, B, Khalsa, SJS and Armstrong, R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol., 50(53), 5369 (doi: 10.3189/172756410790595804)
Rivera, A, Benham, T, Casassa, G, Bamber, JL and Dowdeswell, JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob. Planet. Change, 59(1-4-4), 126137 (doi: 10.1016/j.gloplacha.2006.11.037)
Salzmann, N and 6 others (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere [Online], 7(1;1), 103118 (doi: 10.5194/tc-7-103-2013)
Silverio, W and Jaquet, J-M (2005) Glacial cover mapping (1987-1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens. Environ., 95(3;3), 342350 (doi: 10.1016/j.rse.2004.12.012)
Silverio, W and Jaquet, J-M (2012) Multi-temporal and multi-source cartography of the glacial cover of Nevado Coropuna (Arequipa, Peru) between 1955 and 2003. Int. J. Remote Sens., 33(18), 58765888 (doi: 10.1080/01431161.2012.676742)
Smellie, J and Edwards, B (2016) Glaciovolcanism on Earth and Mars. Cambridge University Press, Cambridge, 493 p. (doi: 10.1017/CBO9781139764384)
Stark, J, Guillén, S and Brady, C (2012) Follow the Water: Emerging Issues of Climate Change and Conflict in Peru. United States Agency for International Development, Washington DC.
Thompson, LG and 8 others (2006) Abrupt tropical climate change; past and present. Proc. Natl. Acad. Sci. USA, 93(28;28), 1053610543 (doi: 10.1073/pnas.0603900103)
Úbeda, J (2011) El Impacto del Cambio Climático en los Glaciares del Complejo Volcánico Nevado Coropuna, (Cordillera Occidental de los Andes Centrales). Universidad Complutense de Madrid, Madrid.
Veettil, BK, Bremer, UF, de Souza, SF, Maier, ÉLB and Simões, JC (2016) Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto Int., 31(5), 544556 (doi: 10.1080/10106049.2015.1059902)
Vuille, M and 6 others (2008) Climate change and tropical Andean glaciers; past, present and future. Earth-Sci. Rev., 89(3-4-4), 7996 (doi: 10.1016/j.earscirev.2008.04.002)
Wagnon, P, Ribstein, P, Kaser, G and Berton, P (1999) Energy balance and runoff seasonality of a Bolivian glacier. Glob. Planet. Change, 22(1–4), 4958 (doi: 10.1016/S0921-8181(99)00025-9)



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed