Skip to main content
×
×
Home

Influence of debris-rich basal ice on flow of a polar glacier

  • Erin C. Pettit (a1), Erin N. Whorton (a2) (a3), Edwin D. Waddington (a2) and Ronald S. Sletten (a2)
Abstract

At Taylor Glacier, a cold-based outlet glacier of the East Antarctic ice sheet, observed surface speeds in the terminus region are 20 times greater than those predicted using Glen’s flow law for cold (–17°C), thin (100 m) ice. Rheological properties of the clean meteoric glacier ice and the underlying deformable debris-rich basal ice can be inferred from surface-velocity and ablation-rate profiles using inverse theory. Here, with limited data, we use a two-layer flowband model to examine two end-member assumptions about the basal-ice properties: (1) uniform softness with spatially variable thickness and (2) uniform thickness with spatially variable softness. We find that the basal ice contributes 85–98% to the observed surface velocity in the terminus region. We also find that the basal-ice layer must be 10–15 m thick and 20–40 times softer than clean Holocene-age glacier ice in order to match the observations. Because significant deformation occurs in the basal ice, our inverse problem is not sensitive to variations in the softness of the meteoric ice. Our results suggest that despite low temperatures, highly deformable basal ice may dominate flow of cold-based glaciers and rheologically distinct layers should be incorporated in models of polar-glacier flow.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of debris-rich basal ice on flow of a polar glacier
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of debris-rich basal ice on flow of a polar glacier
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of debris-rich basal ice on flow of a polar glacier
      Available formats
      ×
Copyright
References
Hide All
Aciego, SM, Cuffey, KM, Kavanaugh, JL, Morse, DL and Severinghaus, JP (2007) Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica. Quat. Res., 68(3), 303313 (doi: 10.1016/j.yqres.2007.07.013)
Alley, RB (1992) Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256
Aster, RC, Borchers, B and Thurber, CH (2013) Parameter estimation and inverse problems, 2nd edn. Academic Press, Waltham, MA
Bahr, DB, Pfeffer, WT and Meier, MF (1994) Theoretical limitations to englacial velocity calculations. J. Glaciol., 40(136), 509518
Balise, MJ and Raymond, CF (1985) Transfer of basal sliding variations to the surface of a linearly viscous glacier. J. Glaciol., 31(109), 308318
Barnes, P, Tabor, D and Walker, JCF (1971) The friction and creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 324(1557), 127155
Bliss, AK, Cuffey, KM and Kavanaugh, JL (2011) Sublimation and surface energy budget of Taylor Glacier, Antarctica. J. Glaciol., 57(204), 684696 (doi: 10.3189/002214311797409767)
Budd, WF and Jacka, TH (1989) A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144 (doi:10.1016/0165–232X(89)90014–1)
Calkin, PE (1974) Subglacial geomorphology surrounding the ice-free valleys of southern Victoria Land, Antarctica. J. Glaciol., 13(69), 415429
Carol, H (1947) The formation of roches moutonnées . J. Glaciol., 1(2), 5759
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Cuffey, KM, Conway, H, Hallet, B, Gades, AM and Raymond, CF (1999) Interfacial water in polar glaciers and glacier sliding at –17°C. Geophys. Res. Lett., 26(6), 751754
Cuffey, KM, Conway, H, Gades, A, Hallet, B, Raymond, CF and Whitlow, S (2000a) Deformation properties of subfreezing glacier ice: role of crystal size, chemical impurities, and rock particles inferred from in situ measurements. J. Geophys. Res., 105(B12), 27 89527 915 (doi: 10.1029/2000JB900271)
Cuffey, KM, Thorsteinsson, T and Waddington, ED (2000b) A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105(B12), 27 88927 894 (doi: 10.1029/2000JB900270)
Cuffey, KM and 8 others (2000c) Entrainment at cold glacier beds. Geology, 28(4), 351354
Echelmeyer, K and Wang, Z (1987) Direct observation of basal sliding and deformation of basal drift at sub-freezing temperatures. J. Glaciol., 33(113), 8398
Fisher, DA and Koerner, RM (1986) On the special rheological properties of ancient microparticle-laden Northern Hemisphere ice as derived from bore-hole and core measurements. J. Glaciol., 32(112), 501510
Fitzsimons, SJ (1996) Paraglacial redistribution of glacial sediments in the Vestfold Hills, East Antarctica. Geomorphology, 15(2), 93108 (doi: 10.1016/0169–555X(95)00122-L)
Fitzsimons, S (2006) Mechanical behaviour and structure of the debris-rich basal ice layer. In Knight, PG ed. Glacier science and environmental change, Blackwell, Maldon, MA, 329335
Fitzsimons, SJ, McManus, KJ, Sirota, P and Lorrain, RD (2001) Direct shear tests of materials from a cold glacier: implications for landform development. Quat. Int., 86(1), 129137 (doi:10.1016/S1040–6182(01)00055–6)
Glen, JW (1958) The flow law of ice: a discussion of the assumptions made in glacier theory, their experimental foundation and consequences. IASH Publ. 47 (Symposium at Chamonix 1958 – Physics of the Movement of the Ice), 171183
Goldberg, DN and Sergienko, OV (2011) Data assimilation using a hybrid ice flow model. Cryosphere, 5(2), 315327 (doi:10.5194/tc-5–315–2011)
Gudmundsson, GH (1997a) Basal-flow characteristics of a linear medium sliding frictionless over small bedrock undulations. J. Glaciol., 43(143), 7179
Gudmundsson, GH (1997b) Basal-flow characteristics of a nonlinear flow sliding frictionless over strongly undulating bedrock. J. Glaciol., 43(143), 8089
Gudmundsson, GH (2003) Transmission of basal variability to a glacier surface. J. Geophys. Res., 108(B5), 2253 (doi: 10.1029/2002JB0022107)
Habermann, M, Maxwell, D and Truffer, M (2012) Reconstruction of basal properties in ice sheets using iterative inverse methods. J. Glaciol., 58(210), 795807 (doi: 10.3189/2012JoG11J168)
Hoffman, MJ, Fountain, AG and Liston, GE (2008) Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J. Geophys. Res., 113(F4), F04014 (doi: 10.1029/2008JF001029)
Holdsworth, G and Bull, C (1970) The flow law of cold ice: investigations on Meserve Glacier, Antarctica. IASH Publ. 86 (Symposium in Hanover, NH 1968 – Antarctic Glaciological Exploration (ISAGE)), 204216
Hooke, RLeB, Holmlund, P and Iverson, NR (1987) Extrusion flow demonstrated by bore-hole deformation measurements over a riegel, Storglaciären, Sweden. J. Glaciol., 33(113), 7278
Hubbard, A, Lawson, W, Anderson, B, Hubbard, B and Blatter, H (2004) Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Ann. Glaciol., 39, 7984
Humphreys, KA and Fitzsimons, SJ (1996) Landform and sediment associations of dry-based glaciers in arid polar environments. Z. Geomorph., Suppl. 105, 2133
Johnston, RR, Fountain, AG and Nylen, TH (2005) The origin of channels on lower Taylor Glacier, McMurdo Dry Valleys, Antarctica, and their implication for water runoff. Ann. Glaciol., 40, 17 (doi: 10.3189/172756405781813708)
Joughin, I, MacAyeal, DR and Tulaczyk, S (2004) Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res., 109(B9), B09405 (doi: 10.1029/2003JB002960)
Lawson, W (1996) The relative strengths of debris-laden basal ice and clean glacier ice: some evidence from Taylor Glacier, Antarctica. Ann. Glaciol., 23, 270276
Lewis, KJ, Fountain, AG and Dana, GL (1998) Surface energy balance and meltwater production for a Dry Valley glacier, Taylor Valley, Antarctica. Ann. Glaciol., 27, 603609
Lliboutry, L (1995) Correspondence. Why calculated basal drags of ice streams can be fallacious. J. Glaciol., 41(137), 204205
MacAyeal, DR (1992) The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods. J. Geophys. Res., 97(B1), 595603 (doi: 10.1029/91JB02454)
MacAyeal, DR (1993) A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol., 39(131), 9198
MacAyeal, DR (1997) EISMINT: lessons in ice sheet modeling. University of Chicago. Department of Geophysical Sciences, Chicago, IL
MacAyeal, DR, Bindschadler, RA and Scambos, TA (1995) Basal friction of Ice Stream E, West Antarctica. J. Glaciol., 41(138), 247262
Mager, S, Fitzsimons, S, Frew, R and Samyn, D (2007) Stable isotope composition of the basal ice from Taylor Glacier, southern Victoria Land, Antarctica. USGS Open File Rep. 20071047 EA 109
Maxwell, D, Truffer, M, Avdonin, S and Stuefer, M (2008) An iterative scheme for determining glacier velocities and stresses. J. Glaciol., 54(188), 888898 (doi: 10.3189/002214308787779889)
Mayewski, PA and 13 others (1996) Climate change during the last deglaciation in Antarctica. Science, 272(5268), 16361638 (doi:10.1126/science.272.5268.1636)
Miyamoto, A and 9 others (1999) Ice-sheet flow conditions deduced from mechanical tests of ice core. Ann. Glaciol., 29, 179183 (doi: 10.3189/172756499781820950)
Nylen, TH, Fountain, AG and Doran, PT (2004) Climatology of katabatic winds in the McMurdo Dry Valleys, southern Victoria Land, Antarctica. J. Geophys. Res., 109(D3), D03114
Paren, JG and Walker, JCF (1971) Influence of limited solubility on the electrical and mechanical properties of ice. Nature, 230(12), 7779 (doi: 10.1038/physci230077a0)
Parker, RL (1994) Geophysical inverse theory, Princeton Univesrity Press, Princeton, NJ
Paterson, WSB (1991) Why ice-age ice is sometimes ‘soft’. Cold Reg. Sci. Technol., 20(1), 7598 (doi: 10.1016/0165–232X(91) 90058-O)
Petra, N, Zhu, H, Stadler, G, Hughes, TJR and Ghattas, O (2012) An inexact Gauss–Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model. J. Glaciol., 58(211), 889903 (doi: 10.3189/2012JoG11J182)
Pralong, MR and Gudmundsson, GH (2011) Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data. J. Glaciol., 57(202), 315324 (doi: 10.3189/002214311796406004)
Raymond, MJ and Gudmundsson, GH (2009) Estimating basal properties of ice streams from surface measurements: a nonlinear Bayesian inverse approach applied to synthetic data. Cryosphere, 3(2), 265278 (doi: 10.5194/tc-3–265–2009)
Robinson, PH (1984) Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Anatarctica. J. Glaciol., 30(105), 153160
Samyn, D, Fitzsimons, SJ and Lorrain, RD (2005a) Strain-induced phase changes within cold basal ice from Taylor Glacier, Antarctica, indicated by textural and gas analyses. J. Glaciol., 51 (174), 611619 (doi: 10.3189/172756505781829098)
Samyn, D, Svensson, A, Fitzsimons, SJ and Lorrain, RD (2005b) Ice crystal properties of amber ice and strain enhancement at the base of cold Antarctic glaciers. Ann. Glaciol., 40, 185190 (doi:10.3189/172756405781813618)
Samyn, D, Svensson, A and Fitzsimons, SJ (2008) Dynamic implications of discontinuous recrystallisation in cold basal ice: Taylor Glacier, Antarctica. J. Geophys. Res., 113(F3), F03S90 (doi: 10.1029/2006JF000600)
Schenk, T, Csatho, B, Ahn, Y, Yoon, T, Shin, SW and Huh, KI (2004) SDEM generation from the Antarctic LIDAR data. (USGS Site Report) US Geological Survey, Reston, VA
Sniffen, PJ (2008) Dry calving at the terminus of a polar glacier, Taylor Glacier, McMurdo Dry Valleys, Antarctica. (MS thesis, Portland State University)
Thorsteinsson, T, Waddington, ED, Taylor, KC, Alley, RB and Blankenship, DD (1999) Strain-rate enhancement at Dye 3, Greenland. J. Glaciol., 45(150), 338345 (doi: 10.3189/002214399793377185)
Thorsteinsson, T, Raymond, CF, Gudmundsson, GH, Bindschadler, RA, Vornberger, P and Joughin, I (2003) Bed topography and lubrication inferred from surface measurements on fast-flowing ice streams. J. Glaciol., 49(167), 481490 (doi: 10.3189/172756503781830502)
Van der Veen, CJ and Whillans, IM (1989a) Force budget: I. Theory and numerical methods. J. Glaciol., 35(119), 5360 (doi:10.3189/002214389793701581)
Van der Veen, CJ and Whillans, IM (1989b) Force budget: II. Application to two-dimensional flow along Byrd Station Strain Network, Antarctica. J. Glaciol., 35(119), 6167 (doi: 10.3189/002214389793701455)
Vieli, A and Payne, AJ (2003) Application of control methods for modelling the flow of Pine Island Glacier, Antarctica. Ann. Glaciol., 36, 197204 (doi: 10.3189/172756403781816338)
Waddington, ED (2010) Life, death and afterlife of the extrusion flow theory. J. Glaciol., 56(200), 973996 (doi: 10.3189/002214311796406022)
Waddington, ED, Neumann, TA, Koutnik, MR, Marshall H-P andMorse, DL (2007) Inference of accumulation-rate patterns from deep layers in glaciers and ice sheets. J. Glaciol., 53(183), 694712 (doi: 10.3189/002214307784409351)
Waller, RI (2001) The influence of basal processes on the dynamic behaviour of cold-based glaciers. Quat. Int., 86, 117128
Whillans, IM and Van der Veen, CJ (1993) Patterns of calculated basal drag on Ice Streams B and C, Antarctica. J. Glaciol., 39(133), 437446
Whillans, I and Van der Veen, K (1995) Correspondence. Reply to Lliboutry’s letter ‘Why calculated basal drags of ice streams can be fallacious’. J. Glaciol., 41(137), 205206
Wilen, LA (2000) A new technique for ice-fabric analysis. J. Glaciol., 46(152), 129139 (doi: 10.3189/172756500781833205)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed