Skip to main content Accessibility help
×
Home

Layer optimized SAR processing and slope estimation in radar sounder data

  • Davide Castelletti (a1), Dustin M. Schroeder (a1) (a2), Elisa Mantelli (a1) and Andrew Hilger (a2)

Abstract

Englacial layers in Antarctica and Greenland are indicators of the dynamic, rheological and subglacial configuration of the ice sheets. Airborne radar sounder data is the primary remote sensing solution for directly observing englacial layers and structures at the glacier-catchment to ice-sheet scale. However, when traditional along-track synthetic aperture radar (SAR) processing is applied, steep layers can disappear, limiting the detectability and interpretability of englacial layer geometry. This study provides a reconstruction algorithm to address the problem of destructive phase interference during the radargram formation. We develop and apply a novel SAR processor optimized for layer detection that enhances the Signal-to-Noise ratio (SNR) of specular reflectors. The algorithm also enables the automatic estimation of layer slope. We demonstrate the algorithm using data acquired at the Institute Ice Stream, West Antarctica.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Layer optimized SAR processing and slope estimation in radar sounder data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Layer optimized SAR processing and slope estimation in radar sounder data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Layer optimized SAR processing and slope estimation in radar sounder data
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Dustin Schroeder, E-mail: dustin.m.schroeder@stanford.edu

References

Hide All
Bruzzone, L (2015) Jupiter icy moon explorer (juice): advances in the design of the radar for icy moons (RIME). IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1257–1260.
Carrer, L and Bruzzone, L (2017) Automatic enhancement and detection of layering in radar sounder data based on a local scale hidden Markov model and the viterbi algorithm. IEEE Transactions on Geoscience and Remote Sensing 55, 962977.
Castelletti, D, Schroeder, DM, Hensley, S and Bruzzone, L (2017) An interferometric approach to cross-track clutter detection in two-channel VHF radar sounders. IEEE Transactions on Geoscience and Remote Sensing 55, 61286140.
Cavitte, M, Blankenship, D, Young, D, Schroeder, D, Parrenin, F, Lemeur, E, Macgregor, J and Siegert, M (2016) Deep radiostratigraphy of the east antarctic plateau: connecting the Dome C and vostok ice core sites. Journal of Glaciology 62(232), 323334.
Chu, W, Schroeder, DM, Seroussi, H, Creyts, T, Palmer, SJ and Bell, RE (2016) Extensive winter subglacial water storage beneath the Greenland ice sheet. Geophysical Research Letters 34(24), 484492.
Ferro, A and Bruzzone, L (2013) Automatic extraction and analysis of ice layering in radar sounder data. IEEE Transactions on Geoscience and Remote Sensing 51, 16221634.
Fettweis, X (2007) Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The Cryosphere 1, 2140.
Grima, C, Blankenship, D, Young, D and Schroeder, D (2014) Surface slope control on firn density at thwaites glacier, West Antarctica: results from airborne radar sounding. Geophysical Research Letters 41(19), 67876794.
Heister, A and Scheiber, R (2018) Benefits of coherent large beamwidth processing of radio-echo sounding data. The Cryosphere Discussion.
Holschuh, N, Christianson, K and Anandakrishnan, S (2014) Power loss in dipping internal reflectors, imaged using ice-penetrating radar. Annals of Glaciology 55, 4956.
Holschuh, N, Parizek, B, Alley, R and Anandakrishnan, S (2017) Decoding ice sheet behavior using englacial layer slopes. Geophysical Research Letters 44(11), 55615570.
Jordan, T, Cooper, M, Schroeder, D, Williams, C, Paden, J, Siegert, M and Bamber, J (2017) Self-affine subglacial roughness: consequences for radar scattering and basal thaw discrimination in Northern Greenland. The Cryosphere Discussions.
Kusk, A and Dall, J (2010) Sar focusing of p-band ice sounding data using back-projection. IEEE International Geoscience and Remote Sensing Symposium, pp. 4071–4074.
Legarsky, J and Gogineni, SP (1998) Unfocused sar using a next-generation coherent radar depth sounder for measurement of greenland ice sheet thickness. IEEE Geoscience and Remote Sensing Symposium.
Legarsky, JJ, Gogineni, SP and Akins, TL (2001) Focused synthetic aperture radar processing of ice-sounder data collected over the greenland ice sheet. IEEE Transactions on Geoscience and Remote Sensing 39, 21092117.
Leuschen, C, Gogineni, P and Tammana, D (2000) Sar processing of radar echo sounder data. Proceedings of IEEE IGARSS.
MacGregor, JA, Fahnestock, MA, Catania, GA, Paden, JD, Gogineni, SP, Young, SK, Rybarski, SC, Mabrey, AN, Wagman, BM and Morlighem, M (2015) Radiostratigraphy and age structure of the greenland ice sheet. Journal of Geophysical Research 120, 212241.
Panton, C (2014) Automated mapping of local layer slope and tracing of internal layers in radio echograms. Ann. Glaciology 55(67), 7177.
Parrenin, F, Hindmarsh, R and Rémy, F (2006) Analytical solutions for the effect of topography, accumulation rate and lateral flow divergence on isochrone layer geometry. Journal of Glaciology 52(177), 191202.
Peters, ME, Blankenship, DD, Carter, SP, Kempf, SD, Young, DA and Holt, JW (2007) Along-track focusing of airborne radar sounding data from West Antarctica for improving basal reflection analysis and layer detection. IEEE Transactions on Geoscience and Remote Sensing 45, 27252736.
Raney, RK (1998) The delay/doppler radar altimeter. IEEE Transactions on Geoscience and Remote Sensing 36(5), 15781588.
Schroeder, DM, Blankenship, DD, Raney, RK and Grima, C (2015) Estimating subglacial water geometry using radar bed echo specularity: application to thwaites glacier, West Antarctica. IEEE Geoscience and Remote Sensing Letters 12(3), 443447.
Schroeder, DM, Seroussi, H, Chu, W and Young, DA (2016) Adaptively constraining radar attenuation and temperature across the Thwaites glacier catchment using bed echoes. Journal of Glaciology 62(236), 10751082.

Keywords

Layer optimized SAR processing and slope estimation in radar sounder data

  • Davide Castelletti (a1), Dustin M. Schroeder (a1) (a2), Elisa Mantelli (a1) and Andrew Hilger (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed