Skip to main content Accessibility help
×
Home

Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding

  • Luke Copland (a1) and Martin Sharp (a1)

Abstract

Spatial patterns in residual bed reflection power (BRPr), derived from ground-based radio-echo sounding, were mapped and interpreted in terms of the thermal and hydrological conditions at the base of a high-Arctic polythermal glacier (John Evans Glacier, Ellesmere Island, Canada). BRPr is the residual from a statistical relationship between measured bed reflection power and ice thickness that describes the rate of dielectric loss with depth in the glacier. We identified three types of thermal structure: (a) Positive BRPr and an internal reflecting horizon occur over the glacier terminus. The reflecting horizon is interpreted as the boundary between warm and cold ice, and suggests the presence of a warm basal layer. (b) Positive BRPr occurs without an internal reflector in the upper part of the ablation zone. This suggests that ice is at the pressure-melting point only at the bed. (c) Negative BRPr without an internal reflector occurs in all other regions, suggesting cold ice at the bed. Where BRPr is positive, its pattern is similar to the pattern of subglacial water flow predicted from the form of the subglacial hydraulic equipotential surface. This suggests that hydrological conditions at the glacier bed are a major control on BRPr, probably because the dielectric contrast between ice and water is higher than that between ice and other subglacial materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping thermal and hydrological conditions beneath a polythermal glacier with radio-echo sounding
      Available formats
      ×

Copyright

References

Hide All
Bamber, J. L. 1987. Internal reflecting horizons in Spitsbergen glaciers. Ann. Glaciol., 9, 510.
Bentley, C. R., Lord, N. and Liu, C.. 1998. Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. J. Glaciol., 44(146), 149156.
Björnsson, H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.
Blatter, H. 1987. On the thermal regime ofan Arctic valley glacier: a study of White Glacier, Axel Heiberg Island, N.W.T., Canada. J. Glaciol., 33(114), 200211.
Blatter, H. and Kappenberger, G.. 1988. Mass balance and thermal regime of Laika ice cap, Coburg Island, N.W.T., Canada. J. Glaciol., 34(116), 102110.
Bogorodsky, V. V., Bentley, C. R. and Gudmandsen, P. E.. 1985. Radioglaciology. Dordrecht, etc., D. Reidel Publishing Co.
Copland, L. and Sharp, M.. 2000. Radio-echo sounding determination of polythermal glacier hydrology. In Noon, D., Stickley, G. and Longstaff, D., eds. Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia. Bellingham, WA, International Society for Optical Engineering, 5964. (SPIE Proceedings 4084.)
Dowdeswell, J. A., Drewry, D. J., Liestøl, O. and Orheim, O.. 1984. Radio echo-sounding of Spitsbergen glaciers: problems in the interpretation of layer andbottom returns. J. Glaciol., 30(104), 1621.
Gades, A. M. 1998. Spatial and temporal variations of basal conditions beneath glaciers and ice sheets inferred from radio echo soundings. (Ph.D. thesis, University of Washington.)
Gades, A. M., Raymond, C. F., Conway, H. and Jacobel, R. W.. 2000. Bed properties of Siple Dome and adjacent ice streams, West Antarctica, inferred from radio-echo sounding measurements. J. Glaciol., 46(152), 8894.
Hamran, S.-E., Aarholt, E., Hagen, J. O. and Mo, P.. 1996. Estimation of relative water content in a sub-polar glacier using surface-penetration radar. J. Glaciol., 42(142), 533537.
Holmlund, P. and Eriksson, M.. 1989. The cold surface layer on Storglaciären. Geogr. Ann., 71A(3–4), 241244.
Hooke, R. LeB. and Pohjola, V. A.. 1994. Hydrology of a segment of a glacier situated in an overdeepening, Storglaciaren, Sweden. J. Glaciol., 40(134), 140148.
Kerr, J. W. 1972. Geology, Dobbin Bay, District of Franklin. Geol. Surv. Can. Map 1358A, 1:250,000.
Kotlyakov, V. M. and Macheret, Yu. Ya.. 1987. Radio echo-sounding of subpolar glaciers in Svalbard: some problems and results of Soviet studies. Ann. Glaciol., 9, 151159.
Macheret, Yu. Ya., Moskalevsky, M. Yu. and Vasilenko, E. V.. 1993.Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime. J. Glaciol., 39(132), 373384.
Moorman, B. J. and Michel, F. A.. 2000. Glacial hydrological system characterization using ground-penetrating radar. Hydrol. Processes, 14, 26452667.
Narod, B. B. and Clarke, G. K. C.. 1994. Miniature high-power impulse transmitter for radio-echo sounding. J. Glaciol., 40(134), 190194.
Oswald, G. K. A. and Robin, G. de Q.. 1973. Lakes beneath the Antarctic ice sheet. Nature, 245(5423), 251254.
Rabus, B. T. and Echelmeyer, K. A.. 1997. The flow of a polythermal glacier: McCall Glacier, Alaska, U.S.A. J. Glaciol., 43(145), 522536.
Robin, G.de Q., Drewry, D. J. and Meldrum, D. T.. 1977. International studies of ice sheet and bedrock. Philos. Trans. R. Soc. London, Ser. B, 279(963), 185196.
Shreve, R. L. 1972. Movement of water in glaciers. J. Glaciol., 11(62), 205214.
Siegert, M. J. and Ridley, J. K.. 1998. Determining basal ice-sheet conditions in the Dome C region of East Antarctica using satellite radar altimetry and airborne radio-echo sounding. J. Glaciol., 44(146), 18.
Skidmore, M. L. and Sharp, M. J.. 1999. Drainage system behaviour of a High-Arctic polythermal glacier. Ann. Glaciol., 28, 209215.
Wadham, J. L., Tranter, M. and Dowdeswell, J. A.. 2000. The hydrochemistry of meltwaters draining a polythermal-based high Arctic glacier, southern Svalbard. II. Winter and early spring. Hydrol. Processes, 14, 17671786.
Woodward, J., Sharp, M. and Arendt, A.. 1997. The influence of super-imposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann. Glaciol., 24, 186190.
Zevenbergen, L.W. and Thorne, C. R.. 1987. Quantitative analysis of land surface topography. Earth Surf. Processes Landforms, 12(1), 4756.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed