Skip to main content Accessibility help
×
Home

Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile

  • A. AYALA (a1) (a2) (a3), F. PELLICCIOTTI (a4), N. PELEG (a1) and P. BURLANDO (a1)

Abstract

Previous estimates of melt and surface sublimation on glaciers of the subtropical semiarid Andes (29–34°S) have been obtained at few specific locations, but it is not clear how ablation components vary across the entire extent of a glacier in this dry environment. Here, we simulate the distributed energy and mass balance of Juncal Norte Glacier (33°S) during a 2-month summer period. Forcing fields of near-surface air temperature and wind speed are generated using two methods accounting for the main physical processes that shape their spatial variations. Simulated meteorological variables and ablation agree well with observations on the glacier tongue and reveal complex patterns of energy and mass fluxes. Ablation decreases from 70 mm w.e. d−1 at the low-albedo glacier terminus (~3000 m), where almost 100% of total ablation corresponds to melt, to <5 mm w.e. d−1 at wind-exposed, strong-radiated sites above 5500 m, where surface sublimation represents >75% of total ablation. Our simulations provide the first glacier-scale estimates of ablation components on a glacier in the study region and better reproduce the observed and expected spatial variations of melt and surface sublimation, in comparison with more simple assumptions, such as linear gradients and uniform wind speeds.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: A. Ayala <ayala@ifu.baug.ethz.ch>

References

Hide All
Anderson, EA (1976) A point energy and mass balance model of a snow cover. Silver Spring, MD, NOAA Tech. Rep. NWS-19
Andreas, EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol., 38, 159184 (doi: 10.1007/BF00121562)
Anslow, FS, Hostetler, S, Bidlake, WR and Clark, PU (2008) Distributed energy balance modeling of South Cascade glacier, Washington and assessment of model uncertainty. J. Geophys. Res., 113(F2), F02019 (doi: 10.1029/2007JF000850)
Ayala, A, Pellicciotti, F and Shea, JM (2015) Modeling 2 m air temperatures over mountain glaciers: exploring the influence of katabatic cooling and external warming. J. Geophys. Res. Atmos., 120, 117 (doi: 10.1002/2013JD021272)
Ayala, A and 6 others (2016) Modelling the hydrological response of debris-free and debris-covered glaciers to present climatic conditions in the semiarid Andes of central Chile. Hydrol. Process., 30, 40364058 (doi: 10.1002/hyp.10971)
Bintanja, R and van den Broeke, MR (1995) The surface energy balance of Antartic snow and blue ice. J. Appl. Meteorol., 34, 902926 (doi: 10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2)
Boisier, JP, Rondanelli, R, Garreaud, RD and Muñoz, F (2016) Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett., 43, 413421 (doi: 10.1002/2015GL067265)
Brock, BW, Willis, IC and Sharp, MJ (2000) Measurement and parameterisation of albedo variations at Haut glacier d ’ Arolla, Switzerland. J. Glaciol., 46(155), 675688 (doi: 10.3189/172756506781828746)
Brutsaert, W (1982) The Surface Roughness Parameterization. Evaporation into the Atmosphere: Theory, History and Applications. Springer Netherlands, Dordrecht, 113127 (doi: 10.1007/978-94-017-1497-6_5)
Burlando, M, Carassale, L, Georgieva, E, Ratto, CF and Solari, G (2007) A simple and efficient procedure for the numerical simulation of wind fields in complex terrain. Boundary-Layer Meteorol., 125(3), 417439 (doi: 10.1007/s10546-007-9196-3)
Carenzo, M (2012) Distributed modelling of changes in glacier mass balance and runoff. (PhD thesis, ETH-Zürich, Zurich) (doi: 10.3929/ethz-a-007636154)
Carrasco, JF, Casassa, G and Quintana, J (2005) Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol. Sci. J., 50(6), 3741 (doi: 10.1623/hysj.2005.50.6.933)
Carrasco, JF, Osorio, R and Casassa, G (2008) Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J. Glaciol., 54(186), 538550 (doi: 10.3189/002214308785837002)
Carturan, L, Cazorzi, F, De Blasi, F and Dalla Fontana, G (2015) Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling. Cryosphere, 9(3), 11291146 (doi: 10.5194/tc-9-1129-2015)
Collier, E and 5 others (2013) High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. Cryosphere, 7(3), 779795 (doi: 10.5194/tc-7-779-2013)
Collier, E and Immerzeel, WW (2015) High-resolution modeling of atmospheric dynamics in the Nepalese Himalaya. J. Geophys. Res. Atmos., 120, 98829896 (doi: 10.1002/2015JD023266)
Cornwell, E, Molotch, NP and McPhee, J (2016) Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrol. Earth Syst. Sci., 20(1), 411430 (doi: 10.5194/hess-20-411-2016)
Corripio, J (2003a) Modelling the energy balance of high altitude glacierised basins in the Central Andes. (PhD thesis, University of Edinburgh, Edinburgh)
Corripio, JG (2003b) Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. Int. J. Geogr. Inf. Sci., 17(1), 123 (doi: 10.1080/713811744)
Dadic, R and 5 others (2012) Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv. Water Resour., 55, 178189 (doi: 10.1016/j.advwatres.2012.06.010)
Dee, DP and 35 others (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597 (doi: 10.1002/qj.828)
Denby, B and Greuell, W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445452 (doi: 10.3189/172756500781833124)
Essery, R, Morin, S, Lejeune, Y and Ménard, CB (2013) A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour., 55, 131148 (doi: 10.1016/j.advwatres.2012.07.013)
Falvey, M and Garreaud, R (2007) Wintertime precipitation episodes in Central Chile: associated meteorological conditions and orographic influences. J. Hydrometeorol., 8(2), 171193 (doi: 10.1175/JHM562.1)
Favier, V, Falvey, M, Rabatel, A, Praderio, E and Lopez, D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile's Norte Chico region (26–32°S). Water Resour. Res., 45(W02424) (doi: 10.1029/2008WR006802)
Gabbi, J, Carenzo, M, Pellicciotti, F, Bauder, A and Funk, M (2014) A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol., 60(224), 11991207 (doi: 10.3189/2014JoG14J011)
Gardner, AS and Sharp, M (2009) Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt. Ann. Glaciol., 50(50), 8086 (doi: 10.3189/172756409787769663)
Garreaud, R and 8 others (2017) The 2010–2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. Discuss., in review (doi: 10.5194/hess-2017-191)
Gascoin, S and 5 others (2011) Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere, 5(4), 10991113 (doi: 10.5194/tc-5-1099-2011)
Gascoin, S, Lhermitte, S, Kinnard, C, Bortels, K and Liston, GE (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv. Water Resour., 55, 2539 (doi: 10.1016/j.advwatres.2012.11.013)
Ginot, P, Kull, C, Schotterer, U, Schwikowski, M and Gäggeler, HW (2006) Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes). Clim. Past, 2, 2130 (doi: 10.5194/cp-2-21-2006)
Greuell, W and Böhm, R (1998) 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J. Glaciol., 44(146), 920 (doi: 10.3198/1998JoG44-146-9-20)
Groot Zwaaftink, CD, Mott, R and Lehning, M (2013) Seasonal simulation of drifting snow sublimation in Alpine terrain. Water Resour. Res., 49(3), 15811590 (doi: 10.1002/wrcr.20137)
Hock, R (1999) A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111
Hock, R and Holmgren, B (2005) A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol., 51(172), 2536 (doi: 10.3189/172756505781829566)
Huintjes, E and 9 others (2015) Evaluation of a coupled snow and energy balance model for Zhadang glacier, Tibetan plateau, using glaciological measurements and time-lapse photography. Arctic, Antarct. Alp. Res., 47(3), 573590 (doi: 10.1657/AAAR0014-073)
Immerzeel, W, Petersen, L, Ragettli, S and Pellicciotti, F (2014) The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas. Water Resour. Res., 50, 22122226 (doi: 10.1002/2013WR014506)
Janke, JR, Bellisario, AC and Ferrando, FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology, 241, 98121 (doi: 10.1016/j.geomorph.2015.03.034)
Jiskoot, H and Mueller, MS (2012) Glacier fragmentation effects on surface energy balance and runoff: field measurements and distributed modelling. Hydrol. Process., 26(12), 18611875 (doi: 10.1002/hyp.9288)
Juszak, I and Pellicciotti, F (2013) A comparison of parameterizations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J. Geophys. Res. Atmos., 118, n/a–n/a (doi: 10.1002/jgrd.50277)
Klok, E and Oerlemans, J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J. Glaciol., 48(163), 505518 (doi: 10.3189/172756502781831133)
Lhermitte, S, Abermann, J and Kinnard, C (2014) Albedo over rough snow and ice surfaces. Cryosphere, 8(3), 10691086 (doi: 10.5194/tc-8-1069-2014)
Liston, G and Elder, K (2006a) A distributed snow-evolution modeling system (SnowModel). J. Hydrometeorol., 7, 12591276 (doi: 10.1175/JHM548.1.)
Liston, G and Elder, K (2006b) A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). J. Hydrometeorol., 7, 217234 (doi: 10.1175/JHM486.1.)
Liston, G and Sturm, M (1998) A snow-transport model for complex terrain. J. Glaciol., 44(148), 498516 (doi: 10.3198/1998JoG44-148-498-516)
MacDonell, S, Kinnard, C, Mölg, T, Nicholson, L and Abermann, J (2013) Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile. Cryosphere, 7(5), 15131526 (doi: 10.5194/tc-7-1513-2013)
MacDougall, AH and Flowers, GE (2011) Spatial and temporal transferability of a distributed energy-balance glacier melt model. J. Clim., 24(5), 14801498 (doi: 10.1175/2010JCLI3821.1)
MacDougall, AH, Wheler, BA and Flowers, GE (2011) A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. Cryosphere, 5(4), 10111028 (doi: 10.5194/tc-5-1011-2011)
Malmros, JK, Mernild, SH, Wilson, R, Yde, JC and Fensholt, R (2016) Glacier area changes in the central Chilean and Argentinean Andes 1955–2013/14. J. Glaciol., 62(232), 391401 (doi: 10.1017/jog.2016.43)
Masiokas, M, Villalba, R, Luckman, B, Le Quesne, C and Aravena, J (2006) Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region. J. Clim., 19, 63346352 (doi: 10.1175/JCLI3969.1)
Masiokas, MH and 7 others (2012) Snowpack variations since AD 1150 in the Andes of Chile and Argentina (30°–37°S) inferred from rainfall, tree-ring and documentary records. J. Geophys. Res., 117(D5), D05112 (doi: 10.1029/2011JD016748)
Masiokas, MH and 11 others (2016) Reconstructing the annual mass balance of the Echaurren Norte glacier (Central Andes, 33.5°S) using local and regional hydroclimatic data. Cryosphere, 10(2), 927940 (doi: 10.5194/tc-10-927-2016)
Mernild, SH, Liston, GE, Hiemstra, C and Wilson, R (2017) The Andes Cordillera. Part III: glacier surface mass balance and contribution to sea level rise (1979–2014). Int. J. Clim, 37(7), 31543174 (doi: 10.1002/joc.4907)
Mölg, T and Kaser, G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J. Geophys. Res. Atmos., 116(16), 113 (doi: 10.1029/2011JD015669)
Mölg, T, CUllen, NJ, Hardy, DR, Kaser, G and Klok, L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int. J. Climatol., 28, 881892 (doi: 10.1002/joc)
Monin, AS and Obukhov, AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Akad. Nauk SSSR Geoph. Inst., 64, 19631987
Montecinos, A and Aceituno, P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Clim., 16, 281296 (doi: 10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2)
Mott, R and Lehning, M (2010) Meteorological modeling of very high-resolution wind fields and snow deposition for mountains. J. Hydrometeorol., 11(4), 934949 (doi: 10.1175/2010JHM1216.1)
Mott, R and 7 others (2008) Simulation of seasonal snow-cover distribution for glacierized sites on Sonnblick, Austria, with the Alpine3D model. Ann. Glaciol., 49, 155160
Munro, DS (2006) Linking the weather to glacier hydrology and mass balance at Peyto glacier. Peyto Glacier: One Century of Science. National Hydrology Research Institute Science Report #8, 135178
Musselman, KN, Pomeroy, JW, Essery, RLH and Leroux, N (2015) Impact of windflow calculations on simulations of alpine snow accumulation, redistribution and ablation. Hydrol. Process., 29(18), 39833999 (doi: 10.1002/hyp.10595)
Nicholson, LI, Petlicki, M, Partan, B and Macdonell, S (2016) 3D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect. Cryosphere, 10, 18971913 (doi: 10.5194/tc-2015-207)
Oerlemans, J (1998) The atmospheric boundary layer over melting glaciers. In Holtslag, AAM and Duynkerke, PG eds. Proceedings of the colloquium ‘clear and cloudy boundary layers,’ Amsterdam, 26–29 August 1997. Royal Netherlands Academy of Arts and Sciences, Amsterdam, 129153
Oerlemans, J (2010) The microclimate of valley glaciers. Igitur, Utrecht Publishing & Archiving Services, Universiteitsbibliotheek Utrecht, Utrecht
Oerlemans, J and Grisogono, B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus A, 54A(5), 440452 (doi: 10.3402/tellusa.v54i5.12164)
Ohlanders, N, Rodriguez, M and McPhee, J (2013) Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrol. Earth Syst. Sci., 17(3), 10351050 (doi: 10.5194/hess-17-1035-2013)
Onset Computer Corporation (2003) Hobo H8 Pro Series User's Manual 2. pp. http://www.onsetcomp.com/files/manual_pdfs/2869-JMAN-HO8-03x-08.pdf
Peleg, N, Fatichi, S, Paschalis, A, Molnar, P and Burlando, P (2017) An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J. Adv. Model. Earth Syst., 9, 133 (doi: 10.1002/2016MS000854)
Pellicciotti, F and 5 others (2005) An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut glacier d'Arolla, Switzerland. J. Glaciol., 51(175), 573587 (doi: 10.3189/172756505781829124)
Pellicciotti, F and 7 others (2008) A study of the energy balance and melt regime on Juncal Norte glacier, semi-arid Andes of central Chile, using melt models of different complexity. Hydrol. Process., 22, 39803997 (doi: 10.1002/hyp.7085)
Pellicciotti, F, Carenzo, M, Helbing, J, Rimkus, S and Burlando, P (2009) On the role of subsurface heat conduction in glacier energy-balance modelling. Ann. Glaciol., 50(50), 1624 (doi: 10.3189/172756409787769555)
Pellicciotti, F, Raschle, T, Huerlimann, T, Carenzo, M and Burlando, P (2011) Transmission of solar radiation through clouds on melting glaciers: a comparison of parameterizations and their impact on melt modelling. J. Glaciol., 57(202), 367381 (doi: 10.3189/002214311796406013)
Pellicciotti, F, Ragettli, S, Carenzo, M and McPhee, J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci. Total Environ., 493C, 11971210 (doi: 10.1016/j.scitotenv.2013.10.055)
Petersen, L and Pellicciotti, F (2011) Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte glacier, Chile. J. Geophys. Res., 116(D23) (doi: 10.1029/2011JD015842)
Petersen, L, Pellicciotti, F, Juszak, I, Carenzo, M and Brock, B (2013) Suitability of a constant air temperature lapse rate over an Alpine glacier: testing the Greuell and Böhm model as an alternative. Ann. Glaciol., 54(63), 120130 (doi: 10.3189/2013AoG63A477)
Pigeon, KE and Jiskoot, H (2008) Meteorological controls on snowpack formation and dynamics in the southern Canadian Rocky Mountains. Arct. Antarct. Alp. Res., 40(4), 716730 (doi: 10.1657/1523-0430(07-054))
Prata, AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q. J. R. Meteorol. Soc., 122(533), 11271151 (doi: 10.1002/qj.49712253306)
Rabatel, A, Castebrunet, H, Favier, V, Nicholson, L and Kinnard, C (2011) Glacier changes in the Pascua-Lama region, Chilean Andes (29°S): recent mass balance and 50 yr surface area variations. Cryosphere, 5(4), 10291041 (doi: 10.5194/tc-5-1029-2011)
Radić, V and Hock, R (2006) Modeling future glacier mass balance and volume changes using ERA-40 reanalysis and climate models: a sensitivity study at Storglaciären, Sweden. J. Geophys. Res. Earth Surf., 111(3), 112 (doi: 10.1029/2005JF000440)
Ragettli, S and Pellicciotti, F (2012) Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour. Res., 48, W03509 (doi: 10.1029/2011WR010559)
Ragettli, S, Cortés, G, Mcphee, J and Pellicciotti, F (2014) An evaluation of approaches for modelling hydrological processes in high-elevation, glacierized Andean watersheds. Hydrol. Process., 28(23), 56745695 (doi: 10.1002/hyp.10055)
Ragettli, S, Immerzeel, WW and Pellicciotti, F (2016) Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. U.S.A., 113(33), 92229227 (doi: 10.1073/pnas.1606526113)
Reid, TD, Carenzo, M, Pellicciotti, F and Brock, BW (2012) Including debris cover effects in a distributed model of glacier ablation. J. Geophys. Res., 117(D18), D18105 (doi: 10.1029/2012JD017795)
Rodriguez, M, Ohlanders, N, Pellicciotti, F, Williams, MW and Mcphee, J (2016) Estimating runoff from a glacierized catchment using natural tracers in the semi-arid Andes Cordillera. Hydrol. Process., 30, 36093626 (doi: 10.1002/hyp.10973)
Rolland, C (2003) Spatial and seasonal variations of air temperature lapse rates in alpine regions. J. Clim., 16, 10321046 (doi: 10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2)
Sauter, T and Galos, SP (2016) Effects of local advection on the spatial sensible heat flux variation on a mountain glacier. Cryosphere, 10(6), 28872905 (doi: 10.5194/tc-10-2887-2016)
Schneeberger, C, Albrecht, O, Blatter, H, Wild, M and Hock, R (2001) Modelling the response of glaciers to a doubling in atmospheric CO2: a case study of Storglaciären, northern Sweden. Clim. Dyn., 17, 825834 (doi: 10.1007/s003820000147)
Shea, JM and Moore, RD (2010) Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. J. Geophys. Res., 115(D23), D23107 (doi: 10.1029/2010JD014351)
Stichler, W and 6 others (2001) Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes. J. Geophys. Res., 106, 613620
Sturm, M, Holmgren, J, König, M and Morris, K (1997) The thermal conductivity of seasonal snow. J. Glaciol., 43(143), 2641
Tachikawa T and 11 others (2011) ASTER Global Digital Elevation Model Version 2 – summary of validation results. 27 pp. http://pubs.er.usgs.gov/publication/70005960
Valdés-Pineda, R, Valdés, JB, Diaz, HF and Pizarro-Tapia, R (2015) Analysis of spatio-temporal changes in annual and seasonal precipitation variability in South America-Chile and related ocean-atmosphere circulation patterns. Int. J. Climatol., 1 (doi: 10.1002/joc.4532)
van den Broeke, MR (1997a) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J. Appl. Meteorol., 36, 763774 (doi: 10.1175/1520-0450(1997)036<0763:MHAMBO>2.0.CO;2)
van den Broeke, MR (1997b) Structure and diurnal variation of the atmospheric boundary layer over a mid-latitude glacier in summer. Boundary-Layer Meteorol., 83(2), 183205 (doi: 10.1023/A:1000268825998)
Viale, M, Nuñez, MN and Nuñez, MN (2011) Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeorol., 12(4), 481507 (doi: 10.1175/2010JHM1284.1)
Zilitinkevich, S, Johansson, P-E, Mironov, D and Baklanov, A (1998) A similarity-theory model for wind profile and resistance law in stably stratified planetary boundary layers. J. Wind Eng. Ind. Aerodyn., 74–76, 209218 (doi: 10.1016/S0167-6105(98)00018-X)

Keywords

Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile

  • A. AYALA (a1) (a2) (a3), F. PELLICCIOTTI (a4), N. PELEG (a1) and P. BURLANDO (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed