Skip to main content
×
×
Home

Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale

  • Sepp Kipfstuhl (a1), Ilka Hamann (a1) (a2), Anja Lambrecht (a1) (a3), Johannes Freitag (a1), Sérgio H. Faria (a1) (a4), Dimitri Grigoriev (a5) and Nobuhiko Azuma (a2)...
Abstract

This work presents a method of mapping deformation-related sublimation patterns, formed on the surface of ice specimens, at microscopic resolution (3–4 μm pixel−1). The method is based on the systematic sublimation of a microtomed piece of ice, prepared either as a thick or a thin section. The mapping system consists of an optical microscope, a CCD video camera and a computer-controlled xy-stage. About 1500 images are needed to build a high-resolution mosaic map of a 4.5 × 9 cm section. Mosaics and single images are used to derive a variety of statistical data about air inclusions (air bubbles and air clathrate hydrates), texture (grain size, shape and orientation) and deformation-related features (subgrain boundaries, slip bands, subgrain islands and loops, pinned and bulged grain boundaries). The most common sublimation patterns are described, and their relevance for the deformation of polar ice is briefly discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale
      Available formats
      ×
Copyright
References
Hide All
Alley, R.B. 1992 Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256.
Arnaud, L., Gay, M., Barnola, J.M. and Duval, P.. 1998 Imaging of firn and bubbly ice in coaxial reflected light: a new technique for the characterization of these porous media. J. Glaciol., 44(147), 326332.
Azuma, N. and 6 others. 2000 Crystallographic analysis of the Dome Fuji ice core. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 4561.
Bons, P.D. 1999 Micro-shear zones in experimentally deformed octachloropropane. J. Struct. Geol., 21, 323334.
Duval, P. and Montagnat, M.. 2002 Comment on ‘Superplastic deformation of ice: experimental observations’ by D.L. Goldsby and D.L. Kohlstedt. J. Geophys. Res., 107(B4), 2082. (10.1029/2001JB000946.)
Eicken, H. 1993 Automated image analysis of ice thin sections – instrumentation, methods and extraction of stereological and textural parameters. J. Glaciol., 39(132), 341352.
EPICA community. 2004 Eight glacial cycles from an Antarctic ice core. Nature, 429(6992), 623628.
Faria, S.H. and Kipfstuhl, S.. 2004 Preferred slip-band orientations and bending observed in the Dome Concordia (East Antarctica) ice core. Ann. Glaciol., 39, 386390.
Fujii, Y. and 8 others. 1999 Tephra layers in the Dome Fuji (Antarctica) deep ice core. Ann. Glaciol., 29, 126130.
Goldsby, D.L. and Kohlstedt, D.L.. 2001 Superplastic deformation of ice: experimental observations. J. Geophys. Res., 106(B6), 11,01711,030.
Goldsby, D.L. and Kohlstedt, D.L.. 2002 Reply to comment by Duval P. and Montagnat M. on ‘Superplastic deformation of ice: experimental observations’. J. Geophys. Res., 107(B11), 2313. (10.1029/2002JB001842.)
Hobbs, B.E., Means, W.D. and Williams, P.F.. 1976. An outline of structural geology. New York, John Wiley and Sons.
Hobbs, P.V. 1974. Ice physics. Oxford, Clarendon Press.
Kipfstuhl, S., Pauer, F., Kuhs, W.F. and Shoji, H.. 2001 Air bubbles and clathrate hydrates in the transition zone of the NGRIP deep ice core. Geophys. Res. Lett., 28(4), 591594.
Koo, J.B., Yoon, D.Y. and Henry, M.F.. 2000 Island grains of low misorientation angles formed during abnormal grain growth in Cu. Metall. Mater. Trans., 31A(5), 14891491.
Kuroiwa, D. and Hamilton, W.L.. 1963 Studies of ice etching and dislocation etch pits. In Kingery, W.D., ed. Ice and snow: properties, processes, and applications. Cambridge, MA, MIT Press, 3455.
Lipenkov, V.Y. 2000 Air bubbles and air-hydrate crystals in the Vostok ice core. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 327358.
Montagnat, M. and Duval, P.. 2000 Rate controlling processes in the creep of polar ice: influence of grain boundary migration associated with recrystallization. Earth Planet Sci. Lett., 183(1–2), 179186.
Mullins, W.W. 1957 Theory of thermal grooving. J. Appl. Phys, 28(3), 333339.
Nakaya, U. 1958 Mechanical properties of single crystals of ice. Part 1. Geometry of deformation. SIPRE Res. Rep. 28.
Nishida, K. and Narita, H.. 1996 Three-dimensional observations of ice crystal characteristics in polar ice sheets. J. Geophys. Res., 101(D16), 21,31121,317.
North Greenland Ice Core Project (NorthGRIP) members. 2004 High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005), 147151.
Pauer, F., Kipfstuhl, J., Kuhs, W.F. and Shoji, H.. 1999 Air clathrate crystals from the GRIP deep ice core: a number-, size- and shape-distribution study. J. Glaciol., 45(149), 2230.
Perovich, D.K. and Hirai, A.. 1988 Microcomputer-based imageprocessing system. J. Glaciol., 34(117), 249252.
Ryde, L., Hutchinson, B. and Kumano, T.. 2004 Grain boundaries with high misorientation and low mobility. Mater. Sci. Forum, 467–470, 739744.
Svensson, A. and 6 others. 2003 Properties of ice crystals in NorthGRIP late- to middle-Holocene ice. Ann. Glaciol., 37, 113122.
Svensson, A. and 7 others. 2005 Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. J. Geophys. Res., 110(D2), D02108. (10.1029/2004JD005134.)
Uchida, T., Hondoh, T., Mae, S., Lipenkov, V.Y. and Duval, P.. 1994 Air-hydrate crystals in deep ice-core samples from Vostok Station, Antarctica. J. Glaciol., 40(134), 7986.
Wang, Y. and Azuma, N.. 1999 A new automatic ice-fabric analyzer which uses image-analysis techniques. Ann. Glaciol., 29, 155162.
Wang, Y., Kipfstuhl, S., Azuma, N., Thorsteinsson, T. and Miller, H.. 2003 Ice fabrics study in the upper 1500 m of the Dome C (East Antarctica) deep ice core. Ann. Glaciol., 37, 97104.
Wilen, L.A. 2000 A new technique for ice-fabric analysis. J. Glaciol., 46(152), 129139.
Wilson, C.J.L. 1986 Deformation induced recrystallization of ice: the application of in situ experiments. In Hobbs, B.E. and Heard, H.C. eds. Mineral and rock deformation: laboratory studies – the Paterson Volume. Washington, DC, American Geophysical Union, 213232.
Wilson, C.J.L., Russell-Head, D.S. and Sim, H.M.. 2003 The application of an automated fabric analyzer system to the textural evolution of folded ice layers in shear zones. Ann. Glaciol., 37, 717.
Zhang, Y. and Wilson, C.J.L.. 1997 Lattice rotation in polycrystalline aggregates and single crystals with one slip system: a numerical and experimental approach. J. Struct. Geol., 19(6), 875885.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed