Skip to main content
    • Aa
    • Aa

Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia

  • Carlos Martín (a1), G. Hilmar Gudmundsson (a1) and Edward C. King (a1)

Flow at ice divides, their shape, size and internal structure depend not only on local conditions, but also on the flow regimes and past histories of the surrounding ice masses. Here we use field data from Kealey Ice Rise, Ellsworth Land, West Antarctica, in combination with flow modelling to investigate any possible signs of transients in the flow of the surrounding ice masses. Kealey Ice Rise shows linear surface features running parallel to its ridge in satellite imagery and a conspicuous layering in the ground-penetrating radar data known as double-peaked Raymond bumps. Through numerical modelling, by using an anisotropic full-Stokes thermomechanical flow solver, we analyse the evolution of Kealey Ice Rise and the timescales involved. We conclude that the features observed in the stratigraphy of Kealey Ice Rise require at least 3 ka of near-stationary flow conditions. However, we cannot exclude the possibility of a recent flow reorganization in the last century. We stress that the signs of stationary flow in radar stratigraphy observed in Kealey Ice Rise have been observed in other ice divides in the East Ellsworth Land area, suggesting stationary flow conditions over a millennial timescale in the region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Modelling of Kealey Ice Rise, Antarctica, reveals stable ice-flow conditions in East Ellsworth Land over millennia
      Available formats
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

SG Advani and CL Tucker (1990) Closure approximations for three dimensional structure tensors. J. Rheol., 34(3), 367386 (doi: 10.1122/1.550133)

RJ Arthern , DP Winebrenner and DG Vaughan (2006) Antarctic snow accumulation mapped using polarization of 4.3cm wavelength microwave emission. J. Ceophys. Res., 111 (D6), D06107 (doi: 10.1029/2004JD005667)

O Castelnau , P Duval , R Lebensohn and GR Canova (1996) Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates. J. Ceophys. Res., 101(B6), 13 85113 868 (doi: 10.1029/96JB00412)

O Castelnau , P Duval , M Montagnat and R Brenner (2008) Elastoviscoplastic micromechanical modeling of the transient creep of ice. J. Geophys. Res., 113(B11), B11203 (doi: 10.1029/2008JB005751)

DH Chung and TH Kwon (2002) Invariant-based optimal fitting closure approximation for the numerical prediction of flow- induced fiber orientation. J. Rheol., 46(1), 169194 (doi: 10.1122/1.1423312)

JC Comiso (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13(10), 16741696 (doi: 10.1175/1520–0442 (2000)013<1674:VATIAS>2.0.CÜ;2)

H Conway , BL Hall , GH Denton , AM Gades and ED Waddington (1999) Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286(5438), 280283 (doi: 10.1126/science.286.5438.280)

D Dahl-Jensen (1989) Steady thermomechanical flow along two- dimensional flow lines in large grounded ice sheets. J. Geophys. Res., 94(B8), 1035510362 (doi: 10.1029/JB094iB08p10355)

R Drews , C Martin , D Steinhage and O Eisen (2013) Characterizing the glaciological conditions at Halvfarryggen ice dome, Dron- ning Maud Land, Antarctica. J. Glaciol., 59(213), 920 (doi: 10.3189/2013JoG12J134)

O Gagliardini and J Meyssonnier (1999) Analytical derivations for the behaviour and fabric evolution of a linear orthotropic ice polycrystal. J. Geophys. Res., 104(B8), 17 79717 809 (doi: 10.1029/1999JB900146)

O Gagliardini and J Meyssonnier (2002) Lateral boundary conditions for a local anisotropic ice-flow model. Ann. Glaciol., 35, 503509 (doi: 10.3189/172756402781817202)

O Gagliardini and 14 others (2013) Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci. Model Dev., 6(4), 12991318 (doi: 10.5194/gmd-6–1299–2013)

F Gillet-Chaulet , O Gagliardini , J Meyssonnier , T Zwinger and J Ruokolainen (2006) Flow-induced anisotropy in polar ice and related ice-sheet flow modelling. J. Non-Newtonian Fluid Mech., 134(1–3), 3343 (doi: 10.1016/j.jnnfm.2005.11.005)

G Godert (2003) A mesoscopic approach for modelling texture evolution of polar ice including recrystallization phenomena. Ann. Glaciol., 37, 2328 (doi: 10.3189/172756403781815375)

R Greve and H Blatter (2009) Dynamics of ice sheets and glaciers. Springer, Dordrecht

GH Gudmundsson and A Jenkins (2009) Ice-flow velocities on Rutford Ice Stream, West Antarctica, are stable over decadal time-scales. J. Glaciol., 55(190), 339344 (doi: 10.3189/002214309788608697)

EC King (2011) Ice stream or not? Radio-echo sounding of Carlson Inlet, West Antarctica. Cryosphere, 5(4), 907916 (doi: 10.5194/tc-5–907–2011)

LA Lliboutry (1987) Very slow flows of solids: basics of modeling in geodynamics and glaciology, Martinus Nijhoff, Dordrecht

L Lliboutry (1993) Anisotropic, transversely isotropic nonlinear viscosity of rock ice and rheological parameters inferred from homogenization. Int. J. Plasticity, 9(5), 619632 (doi: 10.1016/0749–6419(93)90023-J)

MB Lythe , DG Vaughan and BEDMAP consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11 33511 351 (doi: 10.1029/2000JB900449)

Y Ma , O Gagliardini , C Ritz , F Gillet-Chaulet , G Durand and M Montagnat (2010) Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. J. Glaciol., 56(199), 805812 (doi: 10.3189/002214310794457209)

K Makinson , MA King , KW Nicholls and GH Gudmundsson (2012) Diurnal and semidiurnal tide-induced lateral movement of Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 39(10), L10501 (doi: 10.1029/2012GL051636)

A Mangeney and F Califano (1998) The shallow ice approximation for anisotropic ice: formulation and limits. J. Geophys. Res., 103(B1), 691706 (doi: 10.1029/97JB02539)

A Mangeney , F Califano and K Hutter (1997) A numerical study of anisotropic, low Reynolds number, free surface flow for ice sheet modeling. J. Geophys. Res., 102(B10), 22 74922 764 (doi: 10.1029/97JB01697)

C Martın and GH Gudmundsson (2012) Effects of nonlinear rheology, temperature and anisotropy on the relationship between age and depth at ice divides. Cryosphere, 6(5), 12211229 (doi: 10.5194/tc-6–1221–2012)

C Martın , RCA Hindmarsh and FJ Navarro (2006) Dating ice flow change near the flow divide at Roosevelt Island, Antarctica, by using a thermomechanical model to predict radar stratigraphy. J. Geophys. Res., 111 (F1), F01011 (doi: 10.1029/2005JF000326)

C Martın , GH Gudmundsson , HD Pritchard and O Gagliardini (2009a) On the effects of anisotropic rheology on ice flow, internal structure, and the age-depth relationship at ice divides. J. Geophys. Res., 114(F4), F04001 (doi: 10.1029/2008JF001204)

C Martın , RCA Hindmarsh and FJ Navarro (2009b) On the effects of divide migration, along-ridge flow, and basal sliding on isochrones near an ice divide. J. Geophys. Res., 114(F2), F02006 (doi: 10.1029/2008JF001025)

K Matsuoka and 6 others (2003) Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey. J. Geophys. Res., 108(B10), 2499 (doi: 10.1029/2002JB002425)

J Meyssonnier and A Philip (1996) A model for the tangent viscous behaviour of anisotropic polar ice. Ann. Glaciol., 23, 253261

CF Raymond (1983) Deformation in the vicinity of ice divides. J. Glaciol., 29(103), 357373

E Rignot , J Mouginot and B Scheuchl (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)

GdeQ Robin (1955) Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol., 2(18), 523532 (doi: 10.3189/002214355793702028)

T Thorsteinsson (2002) Fabric development with nearest-neighbor interaction and dynamic recrystallization. J. Geophys. Res., 107(B1), 2014 (doi: 10.1019/2001JB000244)

T Thorsteinsson , J Kipfstuhl and H Miller (1997) Textures and fabrics in the GRIP ice core. J. Geophys. Res., 102(C12), 26 58326 599 (doi: 10.1029/97JC00161)

DG Vaughan , HFJ Corr , AM Smith , HD Pritchard and A Shepherd (2008) Flow-switching and water piracy between Rutford Ice Stream and Carlson Inlet, West Antarctica. J. Glaciol., 54(184), 4148 (doi: 10.3189/002214308784409125)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 16 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 22nd September 2017. This data will be updated every 24 hours.