Skip to main content Accessibility help
×
×
Home

Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya

  • Wang Shijin (a1), Qin Dahe (a1) and Xiao Cunde (a1)
Abstract

To better understand the risk of disasters due to glacial lake outburst floods (GLOFs), we synthetically analyze the spatial distribution and evolution of moraine-dammed lakes and potentially dangerous glacial lakes (PDGLs) in the Chinese Himalaya. Our county-based assessment of GLOF disaster risk combines PDGL outburst hazard, regional exposure, vulnerability of exposed elements and adaptation capability (risk management) using the analytic hierarchy process. We synthetically analyze the disaster risk using the weighted comprehensive method. Remote-sensing data show there are 329 moraine-dammed lakes (>0.02 km2; total area 125.43 km2) in the Chinese Himalaya, of which 116 (total area 49.49 km2) are identified as PDGLs. The zones at highest risk of GLOF disaster are mainly located in Nyalam, Tingri, Dinggyê, Lhozhag, Kangmar and Zhongba, in the mid-eastern Himalaya. Lowest-risk zones are located in the eastern Himalaya. On the county scale, Lhozhag and Lhunze have the highest hazard degrees and exposure, while Zhongba and Zando have the highest degree of vulnerability and lowest adaptation capacity. Our regionalization results for GLOF disaster risk are consistent with the distribution of historical disaster sites across the Chinese Himalaya.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Moraine-dammed lake distribution and outburst flood risk in the Chinese Himalaya
      Available formats
      ×
Copyright
Corresponding author
Correspondence: Wang Shijin <xiaohanjin@163.com>
References
Hide All
Ashraf, A, Naz, R and Roohi, R (2012) Glacial lake outburst flood hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan: implications and risk analysis. Geomat. Natur. Hazards Risk, 3(2), 113132 (doi: 10.1080/19475705.2011.615344)
Awal, R, Nakagawa, H, Fujita, M, Kaiwake, K, Baba, Y and Zhang, H (2010) Experimental study on glacial lake outburst floods due to waves overtopping and erosion of moraine dam. Ann. Disaster Prev. Res. Inst., 53(B), 583594
Bajracharya, SR, Mool, PK and Shrestha, B (2007) Impact of climate change on Himalayan glaciers and glacial lakes: case studies on GLOF and associated hazards in Nepal and Bhutan. (ICIMOD Publication 169) International Centre for Integrated Mountain Development and United Nations Environment Programme Regional Office, Asia and the Pacific, Kathmandu
Bartelt, P, Buser, O, Bühler, Y, Dreier, L and Christen, M (2014) Numerical simulation of snow avalanches: modelling dilatative processes with cohesion in rapid granular shear flows. In Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2014, Vol. 1. CRC Press, Delft, 327332
Benn, DI and 9 others (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev., 114(1–2), 156174 (doi: 10.1016/j.earscirev.2012.03.008)
Bolin, RC and Stanford, L (1998) The Northridge earthquake: vulnerability and disaster. Routledge, London
Carey, M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global Planet. Change, 47(2–4), 122134
Carey, M (2008) Disasters, development, and glacial lake control in twentieth-century Peru. In Wiegandt, E ed. Mountains: sources of water, sources of knowledge. Springer, Dordrecht, 181196
Carey, M, Huggel, C, Bury, J, Portocarrero, C and Haeberli, W (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Climatic Change, 112(3–4), 733767
Catani, F, Casagli, N, Ermini, L, Righini, G and Menduni, G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides, 2(4), 329342 (doi: 10.1007/s10346-005-0021-0)
Clague, JJ and Evans, SG (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quat. Sci. Rev., 19(17–18), 17631783 (doi: 10.1016/S0277-3791(00)00090-1)
Davidson, R and Lambert, K (2001) Comparing the hurricane disaster risk of U.S. coastal counties. Natur. Hazards Rev., 2(3), 132142 (doi: 10.1061/(ASCE)1527-6988(2001)2:3(132))
Dussaillant, A, Benito, G, Buytaert, W, Carling, P, Meier, C and Espinoza, F (2010) Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Natur. Hazards, 54(2), 469481 (doi: 10.1007/s11069-009-9479-8)
Fell, R (1994) Landslide risk assessment and acceptable risk. Can. Geotech. J., 31(2), 261272
Fread, DL (1984a) BREACH: an erosion model for earthen dam failures. Hydrologic Research Laboratory, National Weather Service, National Oceanic and Atmospheric Administration, Silver Spring, MD
Fread, DL (1984b) DWOPER: National Weather Service operational dynamic wave model. (Hydro technical note) Hydrologic Research Laboratory, National Weather Service, National Oceanic and Atmospheric Administration, Silver Spring, MD
Fread, DL (1988) The NWS DAMBRK model: theoretical background/user documentation. Hydrologic Research Laboratory, National Weather Service, National Oceanic and Atmospheric Administration, Silver Spring, MD
Frey, H, Haeberli, W, Linsbauer, A, Huggel, C and Paul, F (2010) A multi-level strategy for anticipating future glacier lake formation and associated hazard potentials. Natur. Hazards Earth Syst. Sci. (NHESS), 10(2), 339352
Gardelle, J, Arnaud, Y and Berthier, E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Global Planet. Change, 75(1–2), 4755 (doi: 10.1016/j.gloplacha.2010.10.003)
Haeberli, W (2013) Mountain permafrost – research frontiers and a special long-term challenge. Cold Reg. Sci. Technol., 96, 7176 (doi: 10.1016/j.coldregions.2013.02.004)
Huggel, C, Kääb, A, Haeberli, W, Teysseire, P and Paul, F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can. Geotech. J., 39(2), 316330
Huggel, C, Haeberli, W, Kääb, A, Bieri, D and Richardson, S (2004) An assessment procedure for glacial hazards in the Swiss Alps. Can. Geotech. J., 41(6), 10681083
Iturrizaga, L (2009) Glacial lakes in the Hindukush–Karakoram Mountains and their hazard potential. Geophys. Res. Abstr., 11, EGU2009-8062-1
Ives, JD, Shrestha, RB and Mool, PK (2010) Formation of glacial lakes in the Hindu Kush–Himalayas and GLOF risk assessment. International Centre for Integrated Mountain Development, Kathmandu
Kaltenborn, BP, Nellemann, C and Vistnes, II eds (2010) High mountain glaciers and climate change: challenges to human livelihoods and adaptation. UN Environment Programme, Arendal
Kattelmann, R (2003) Glacial lake outburst floods in the Nepal Himalaya: a manageable hazard? Natur. Hazards, 28(1), 145154 (doi: 10.1023/A:1021130101283)
Klimeš, J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. AUC Geogr., 47(2), 2531
Korup, O and Tweed, F (2007) Ice, moraine, and landslide dams in mountainous terrain. Quat. Sci. Rev., 26(25–28), 34063422 (doi: 10.1016/j.quascirev.2007.10.012)
Linsbauer, A, Paul, F and Haeberli, W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J. Geophys. Res., 117(F3), F03007 (doi: 10.1029/2011JF002313)
Linsbauer, A, Paul, F, Machguth, H and Haeberli, W (2013) Comparing three different methods to model scenarios of future glacier change in the Swiss Alps. Ann. Glaciol., 54(63 Pt 2), 241253 (doi: 10.3189/2013AoG63A400)
Liu, X, Zhang, J, Tong, Z, Bao, Y and Zhang, D (2011) Grid-based multi-attribute risk assessment of snow disasters in the Grasslands of Xilingol, Inner Mongolia. Human Ecol. Risk Assess., 17(3), 712731 (doi: 10.1080/10807039.2011.571123)
McKillop, RJ and Clague, JJ (2007) Statistical, remote sensing-based approach for estimating the probability of catastrophic drainage from moraine-dammed lakes in southwestern British Columbia. Global Planet. Change, 56(1–2), 153171 (doi: 10.1016/j.gloplacha.2006.07.004)
Mayer, C, Lambrecht, A, Hagg, W, Helm, A and Scharrer, K (2008) Post-drainage ice dam response at Lake Merzbacher, Inylchek Glacier, Kyrgyzstan. Geogr. Ann. A, 90(1), 8796 (doi: 10.1111/j.1468-0459.2008.00336.x)
Mool, PK, Bajracharya, SR and Joshi, SP (2001) Inventory of glaciers, glacial lakes and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush–Himalayan region, Nepal. International Centre for Integrated Mountain Development with United Nations Environment Programme/Regional Resource Centre for Asia and the Pacific, Kathmandu
Mool, P., Shrestha, R and Ives, JD (2010) Glacial lakes and associated floods in the Hindu Kush–Himalayas. (Information Sheet 2/10) International Centre for Integrated Mountain Development, Kathmandu
Nadim, F and Kjekstad, O (2009) Assessment of global high-risk landslide disaster hotspots. In Sassa, K and Canuti, P eds. Landslides – disaster risk reduction. Springer, Berlin, 213221
Nayar, A (2009) When the ice melts. Nature, 461(7267), 10421046 (doi: 10.1038/4611042a)
O’Keefe, P, Westgate, K and Wisner, B (1976) Taking the naturalness out of natural disasters. Nature, 260(5552), 566567 (doi: 10.1038/260566a0)
Osti, R and Egashira, S (2014) Hydrodynamic characteristics of the Tam Pokhari glacial lake outburst flood in the Mt Everest region, Nepal. Hydrol. Process., 23(20), 29432955 (doi: 10.1002/hyp.7405)
Richardson, SD and Reynolds, JM (2000) An overview of glacial hazards in the Himalayas. Quat. Int., 65–66(1), 3147 (doi: 10.1016/S1040-6182(99)00035-X)
Saaty, TL (1977) A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3), 234281 (doi: 10.1016/0022-2496(77)90033-5)
Sakai, A, Chikita, K and Yamada, T (2000) Expansion of a moraine-dammed glacial lake, Tsho Rolpa, in Rolwaling Himal, Nepal Himalaya. Limnol. Oceanogr., 45(6), 14011408
Schaub, Y, Haeberli, W, Huggel, C, Künzler, M and Bründl, M (2013) Landslides and new lakes in deglaciating areas: a risk management framework. In Margottini, C, Canuti, P and Sassa, K eds. Landslide science and practice, vol. 7: Social and economic impact and policies. Springer, Berlin, 3138
Shi, Y, Liu, C, Wang, Z, Liu, S and Ye, B eds (2005) A concise glacier inventory of China. Shanghai Science Popularization Press, Shanghai [in Chinese]
Singh, P and Singh, VP (2001) Snow and glacier hydrology. (Water Science and Technology Library) Kluwer Academic Publishers, Boston, MA
Smith, K (2001) Environmental hazards: assessing risk and reducing disaster. Routledge, London
Stallings, RA (1991) Disasters as social problems? A dissenting view. Int. J. Mass Emergencies Disasters, 9(1), 6974
Starmap Publishing House (2006) Atlas of China traffic. Starmap Publishing House, Beijing [in Chinese]
Vuichard, D and Zimmermann, M (1987) The 1985 catastrophic drainage of a moraine-dammed lake, Khumbu Himal, Nepal: cause and consequences. Mt. Res. Dev. [China], 7(2), 91110
Wang, S and Zhao, J (2011) Potential evaluation and spatial development strategies of glacier tourism in China. Geogr. Res., 30(8), 15281542 (doi: 10.11821/yj2011080018) [in Chinese with English summary]
Wang, S and Zhang, T (2013) Glacial lakes change and current status in the central Chinese Himalayas from 1990 to 2010. J. Appl. Remote Sens., 7(1), 073459 (doi: 10.1117/1.JRS.7.073459)
Wang, S, Qin, D and Ren, J (2012) Progress and prospect in risk assessment of glacial lake outburst hazards. Adv. Water Sci., 23(5), 735742 (doi: 32.1309.P.20120824.1607.017) [in Chinese with English summary]
Wang, W, Yao, T, Gao, Y, Yang, X and Kattel, DB (2011) A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mt. Res. Dev., 31(2), 122130 (doi: 10.1659/MRD-JOURNAL-D-10-00059.1)
Wilhite, DA (2000) Drought as a natural hazard: concepts and definitions. In Wilhite, DA ed. Drought: a global assessment. Routledge, London, 318
Wisner, B, Blaikie, P, Cannon, T and Davis, I (2004) At risk: natural hazards, people’s vulnerability and disasters, 2nd edn. Routledge, London
Worni, R, Stoffel, M, Huggel, C, Volz, C, Casteller, A and Luckman, B (2012) Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina). J. Hydrol., 444–445, 134145 (doi: 10.1016/j.jhydrol.2012.04.013)
Worni, R, Huggel, C and Stoffel, M (2013) Glacial lakes in the Indian Himalayas –from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. Sci. Total Environ., 468–469(Suppl.), S71S84 (doi: 10.1016/j.scitotenv.2012.11.043)
Wu, C-H and Chen, S-C (2009) Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112(3), 190204 (doi: 10.1016/j.geomorph.2009.06.002)
Yao, T (2010) Glacial fluctuations and its impacts on lakes in the southern Tibetan Plateau. Chinese Sci. Bull., 55(20), 2017 (doi: 10.1007/s11434-010-4327-5) [in Chinese with English summary]
Zhang, J (2004) Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China. Agric., Ecosyst. Environ., 102(2), 133153
Zhang, J, Liang, J, Liu, X and Tong, Z (2009) GIS-based risk assessment of ecological disasters in Jilin Province, Northeast China. Human Ecol. Risk Assess., 15(4), 727745 (doi: 10.1080/10807030903050962)
Zhao, Y and others (2006) Assessing the ecological security of the Tibetan Plateau: methodology and a case study for Lhaze County. J. Environ. Manag., 80(2), 120131 (doi: 10.1016/j.jenvman.2005.08.019)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed