Skip to main content
×
×
Home

Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China

  • Yong Zhang (a1) (a2), Koji Fujita (a2), Shiyin Liu (a1), Qiao Liu (a1) and Xin Wang (a1)...
Abstract

Digital elevation models (DEMs) of the ablation area of Hailuogou glacier, China, produced from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data obtained in 2009, differential GPS (DGPS) data surveyed in 2008 and aerial photographs acquired in 1966 and 1989 are differenced to estimate long- and short-term glacier surface elevation change (dh/dt). The mean dh/dt of the ablation area over 43 years (1966–2009) is −1.1 ± 0.4 m a−1. Since 1989 the thinning has accelerated significantly. Ice velocities measured by DGPS at 28 fixed stakes implanted in the ablation area increase with distance from the glacier terminus, ranging from 41.0 m a−1 approaching the glacier terminus to a maximum of 205.0 m a−1 at the base of an icefall. Our results reveal that the overall average ice velocity in the ablation area has undergone significant temporal variability over the past several decades. Changes in glacier surface elevation in the ablation area result from the combined effects of climate change and glacier dynamics, which are driven by different factors for different regions and periods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multi-decadal ice-velocity and elevation changes of a monsoonal maritime glacier: Hailuogou glacier, China
      Available formats
      ×
Copyright
References
Hide All
Adhikary, S., Nakawo, M., Seko, K. and Shakya, B.. 2000. Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 4352.
Aizen, V.B., Nikitin, S.A. and Song, G.. 1994. Model of the dynamics of the Hailuogou glacier (southeastern Xizang). In Xie, Z. and Kotlyakov, V.M., eds. Glaciers and environment in the Qinghai-Xizang (Tibet) Plateau (I) – the Gongga Mountain: reports on the Sino-Russian Joint Glaciological Expedition. Beijing and New York, Science Press, 121132.
Benn, D.I., Wiseman, S. and Hands, K.A.. 2001. Growth and drainage of supraglacial lakes on the debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol., 47(159), 626638.
Ding, Y., Liu, S., Li, J. and Shangguan, D.. 2006. The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol., 43, 97105.
Dyurgerov, M. 2002. Glacier mass balance and regime: data of measurements and analysis. Boulder, CO, University of Colorado. Institute of Arctic and Alpine Research. (INSTAAR Occasional Paper 55.)
Fujisada, H., Bailey, G.B., Kelly, G.G., Hara, S. and Abrams, M.J.. 2005. ASTER DEM performance. IEEE Trans. Geosci. Remote Sens., 43(12), 27072714.
Fujita, K. 2008. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276(1–2), 1419.
Fujita, K., Suzuki, R., Nuimura, T. and Sakai, A.. 2008. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J. Glaciol., 54(185), 220228.
Guo, C.-X., Bo, M., Ji, Z. and Mao, L.. 2002. The transfer model between the Xi’an 80 and WGS-84 coordinate systems. Northeast Surv. Map., 25(4), 3436. [In Chinese with English summary.]
Helsen, M.M. and 7 others. 2008. Elevation changes in Antarctica mainly determined by accumulation variability. Science, 320(5883), 16261629.
Kaser, G., Cogley, J.G., Dyurgerov, M.B., Meier, M.F. and Ohmura, A.. 2006. Mass balance of glaciers and ice caps: consensus estimates for 1961–2004. Geophys. Res. Lett., 33(19), L19501. (10.1029/2006GL027511.)
Kick, W. 1962. Variations of some central Asiatic glaciers. IASH Publ. 58 (Symposium at Obergurgl 1962 – Variations of the Regime of Existing Glaciers), 223229.
Li, J. and Su, Z., eds. 1996. Glaciers in the Hengduanshan. Beijing, Science Press. [In Chinese with English summary.]
Liu, S., Sun, W., Shen, Y. and Li, G.. 2003. Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J. Glaciol., 49(164), 117124.
Liu, S. and 7 others. 2006. Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann. Glaciol., 43, 9196.
Lu, A., Yao, T., Liu, S., Ding, L. and Li, G.. 2002. Glacier change in the Geladandong area of the Tibetan Plateau monitored by remote sensing. J. Glaciol. Geocryol., 24(5), 559562. [In Chinese with English summary.]
Mair, D., Nienow, P., Willis, I. and Sharp, M.. 2001. Spatial patterns of glacier motion during a high-velocity event: Haut Glacier d’Arolla, Switzerland. J. Glaciol., 47(156), 920.
Nakawo, M., Yabuki, H. and Sakai, A.. 1999. Characteristics of Khumbu Glacier, Nepal Himalaya: recent changes in the debris-covered area. Ann. Glaciol., 28, 118122.
Nye, J.F. 1965. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol., 5(41), 661690.
Oerlemans, J. and Fortuin, J.P.F.. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258(5079), 115117.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Rignot, E., Rivera, A. and Casassa, G.. 2003. Contribution of the Patagonian icefields of South America to sea level rise. Science, 302(5644), 434437.
Sakai, A., Nakawo, M. and Fujita, K.. 2002. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alp. Res., 34(1), 1219.
Shangguan, D. and 9 others. 2006. Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Ann. Glaciol., 43, 7985.
Shi, Y. and Liu, S.. 2000. Estimation on the response of glaciers in China to the global warming in the 21st century. Chinese Sci. Bull., 45(7), 668672. [In Chinese.]
Shi, Y., Liu, C., Wang, Z., Liu, S. and Ye, B., eds. 2005. A concise China glacier inventory. Shanghai, Shanghai Science Popularization Press. [In Chinese.]
Solomon, S. and 7 others, eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press.
Song, G. 1994. Movement features of Hailuogou glacier in the Gongga Mountain. In Xie, Z. and Kotlyakov, V.M., eds. Glaciers and environment in the Qinghai–Xizang (Tibet) Plateau (I) – the Gongga Mountain: reports on the Sino-Russian Joint Glaciological Expedition. Beijing and New York, Science Press, 110120.
State Bureau of Surveying and Mapping of China (SBSMC). 2000. Quality requirement for digital products of surveying and mapping – Part 1: quality requirement for digital line topographic map, digital elevation model. Beijing, Standards Press of China. (Standard No. GB/T 17941–2000.) [In Chinese.]
Su, Z., Liu, S., Wang, N. and Shi, A.. 1992. Recent fluctuations of glaciers in the Gongga mountains. Ann. Glaciol., 16, 163167.
Su, Z., Song, G. and Cao, Z.. 1996. Maritime characteristics of Hailuogou glacier in the Gongga Mountains. J. Glaciol. Geocryol.,18, Special Issue, 5159. [In Chinese with English summary.]
Van der Veen, C.J. 1999. Fundamentals of glacier dynamics. Rotterdam, A.A. Balkema.
Vincent, C., Soruco, A., Six, D. and Le Meur, E.. 2009. Glacier thickening and decay analysis from 50 years of glaciological observations performed on Glacier d’Argentière, Mont Blanc area, France. Ann. Glaciol., 50(50), 7379.
Wang, J.X., Wang, J. and Lu, C.P.. 2003. Problem of coordinate transformation between WGS-84 and BEIJING 54. J. Geod. Geodyn., 23(3), 7073. [In Chinese.]
Willis, I., Mair, D., Hubbard, B., Nienow, P., Fischer, U.H. and Hubbard, A.. 2003. Seasonal variations in ice deformation and basal motion across the tongue of Haut Glacier d’Arolla, Switzerland. Ann. Glaciol., 36, 157167.
Xie, Z., Su, Z., Shen, Y. and Feng, Q.. 2001. Mass balance and water exchange of Hailuoguo glacier in Mount Gongga and their influence on glacial melt runoff. J. Glaciol. Geocryol., 23(1), 715. [In Chinese with English summary.]
Yao, T.D., Wang, Y.Q., Liu, S.Y., Pu, J.C., Shen, Y.P. and Lu, A.X.. 2004. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China. Sci. China D, 47(12), 10651075.
Ye, Q., Yao, T., Kang, S., Chen, F. and Wang, J.. 2006. Glacier variations in the Naimona’nyi region, western Himalaya, in the last three decades. Ann. Glaciol., 43, 385389.
Zhang, Y., Liu, S., Xu, J. and Shangguan, D.. 2008. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of Yangtze River in western China. Environ. Geol., 56(1), 5968.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 60 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 19th August 2018. This data will be updated every 24 hours.