Skip to main content Accessibility help
×
Home

New shortwave infrared albedo measurements for snow specific surface area retrieval

  • B. Montpetit (a1), A. Royer (a1), A. Langlois (a1), P. Cliche (a1), A. Roy (a1), N. Champollion (a2), G. Picard (a2), F. Domine (a2) and R. Obbard (a3)...

Abstract

Snow grain-size characterization, its vertical and temporal evolution is a key parameter for the improvement and validation of snow and radiative transfer models (optical and microwave) as well as for remote-sensing retrieval methods. We describe two optical methods, one active and one passive shortwave infrared, for field determination of the specific surface area (SSA) of snow grains. We present a new shortwave infrared (SWIR) camera approach. This new method is compared with a SWIR laser- based system measuring snow albedo with an integrating sphere (InfraRed Integrating Sphere (IRIS)). Good accuracy (10%) and reproducibility in SSA measurements are obtained using the IRIS system on snow samples having densities greater than 200 kg m-3, validated against X-ray microtomography measurements. The SWIRcam approach shows improved sensitivity to snow SSA when compared to a near-infrared camera, giving a better contrast of the snow stratigraphy in a snow pit.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New shortwave infrared albedo measurements for snow specific surface area retrieval
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New shortwave infrared albedo measurements for snow specific surface area retrieval
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New shortwave infrared albedo measurements for snow specific surface area retrieval
      Available formats
      ×

Copyright

References

Hide All
Aoki, T, Aoki, T, Fukabori, M, Hachikubo, A, Tachibana, Y and Nishio, F (2000) Effects of snow physical parameters on spectral albedo and bi-directional reflectance of snow surface. J. Geophys. Res., 105(D8), 10219-10 236 (doi: 10.1029/1999JD901122)
Armstrong, RL and Brun, E eds. (2008) Snow and climate: physical processes, surface energy exchange and modelling. Cambridge University Press, Cambridge
Arnaud, L and 7 others (2011) Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation. J. Glaciol., 57(201), 17-29 (doi: 10.3189/002214311795306664)
Brown, RD (2010) Analysis of snow cover variability and change in Québec, 1948-2005. Hydrol. Process., 24(14), 1929-1954 (doi: 10.1002/hyp.7565)
Brucker, L, Picard, G and Fily, M (2010) Snow grain-size profiles deduced from microwave snow emissivities in Antarctica. J. Glaciol., 56(197), 514-526
Brucker, L and 7 others (2011) Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements. J. Glaciol., 57(201), 171-182 (doi: 10.3189/ 002214311795306736)
Butt, MJ and Kelly, REJ (2008) Estimation of snow depth in the UK using the HUT snow emission model. Int. J. Remote Sens., 29(14), 4249-4267 (doi: 10.1080/01431160801891754)
Chang, ATC, Foster, JL, Hall, DK, Rango, A and Hartline, BK (1982) Snow water equivalent estimation by microwave radiometry. Cold Reg. Sci. Technol., 5(3), 259-267 (doi: 10.1016/0165- 232X(82)90019-2)
Chen, S and Baker, I (2010) Evolution of individual snowflakes during metamorphism. J. Geophys. Res., 115(D21), D21114 (doi: 10.1029/2010JD014132)
Denoth, A (1989) Snow dielectric measurements. Adv. Space Res., 9(1), 233-243
Derksen, C and 6 others (2010) Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ., 114(8), 1699-1709 (doi: 10.1016/j.rse.2010.02.019)
Domine, F, Cabanes, A, Taillandier, AS and Legagneux, L (2001) Specific surface area of snow samples determined by CH4 adsorption at 77 K and estimated by optical microscopy and scanning electron microscopy. Environ. Sci. Technol., 35(4), 771-780 (doi: 10.1021/es001168n)
Domine, F, Salvatori, R, Legagneux, L, Salzano, R, Fily, M and Casacchia, R (2006) Correlation between the specific surface area and the short wave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol., 46(1), 60-68 (doi: 10.1016/j.coldre- gions.2006.06.002)
Domine, F and 7 others (2008) Snow physics as relevant to snow photochemistry. Atmos. Chem. Phys., 8(2), 171-208 (doi: 10.5194/acp-8-171-2008)
Dupont, F and 7 others (2012) Monitoring the melt season length of the Barnes Ice Cap over the 1979-2010 period using active and passive microwave remote sensing data. Hydrol. Process. (doi: 10.1002/hyp.9382)
Durand, M, Kim, EJ and Margulis, SA (2008) Quantifying uncertainty in modeling snow microwave radiance for a mountain snow- pack at the point-scale, including stratigraphic effects. IEEE Trans. Geosci. Remote Sens., 46(6), 1753-1767 (doi: 10.1109/ TGRS.2008.916221)
Fernandes, R, Zhao, H, Wang, X, Key, J, Qu, X and Hall, A (2009) Controls on Northern Hemisphere snow albedo feedback quantified using satellite Earth observations. Geophys. Res. Lett., 36(21), L21702 (doi: 10.1029/2009GL040057)
Fierz, C and 8 others. (2009) The international classification for seasonal snow on the ground. UNESCO-International Hydrological Programme, Paris (IHP Technical Documents in Hydrology 83)
Flanner, MG, Zender, CS, Randerson, JT and Rasch, PJ (2007) Present-day climate forcing and response from black carbon in snow. J. Geophys. Res., 112(D11), D11202 (doi: 10.1029/ 2006JD008003)
Flin, F and 9 others (2005) Adaptive estimation of normals and surface area for discrete 3-D objects: application to snow binary data from x-ray tomography. IEEE Trans. Image Process., 14(5), 585-596 (doi: 10.1109/TIP.2005.846021)
Foster, JL and 10 others (2011) A blended global snow product using visible, passive microwave and scatterometer satellite data. Int. J. Remote Sens., 32(5), 1371-1395 (doi: 10.1080/ 01431160903548013)
Gallet, J-C, Domine, F, Zender, CS and Picard, G (2009) Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere, 3(2), 167-182 (doi: 10.5194/tc-3-167-2009)
Grannas, AM and 34 others (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys., 7(16), 4329-4373 (doi: 10.5194/acp-7-4329-2007)
Grenfell, TC and Warren, SG (1999) Representation of a non- spherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104(D24), 31 697-31 709 (doi: 10.1029/2005JD005811)
Grody, N (2008) Relationship between snow parameters and microwave satellite measurements: theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res., 113(D22), D22108 (doi: 10.1029/ 2007JD009685)
Hall, A (2004) The role of surface albedo feedback in climate. J. Climate, 17(7), 1550-1568 (doi: 10.1175/1520-0442(2004)017<1550:TR0SAF>2.0.C0;2)
Jin, Z, Charlock, TP, Yang, P, Xie, Y and Miller, W (2008) Snow optical properties for different particle shapes with application to snow grain size retrieval and MODIS/CERES radiance comparison over Antarctica. Remote Sens. Environ., 112(9), 3563-3581 (doi: 10.1016/j.rse.2008.04.011)
Kokhanovsky, AA and Zege, EP (2004) Scattering optics of snow. Appl. Opt., 43(7), 1589-1602 (doi: 10.1364/AO.43.001589)
Kontu, A and Pulliainen, J (2010) Simulation of spaceborne microwave radiometer measurements of snow cover using in situ data and brightness temperature modeling. IEEE Trans. Geosci. Remote Sens., 48(3), 1031-1044 (doi: 10.1109/TGRS.2009.2030499)
Langlois, A, Royer, A and Goita, K (2010a) Analysis of simulated and spaceborne passive microwave brightness temperatures using in situ measurements of snow and vegetation properties. Can. J. Remote Sens., 36(S1), S135-S148 (doi: 10.5589/m10-016)
Langlois, A and 8 others (2010b) On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Reg. Sci. Technol., 61(1), 34-42 (doi: 10.1016/j.coldregions.2010.01.004)
Lyapustin, A, Tedesco, M, Wang, Y, Aoki, T, Hori, M and Kokhanovsky, A (2009) Retrieval of snow grain size over Greenland from MODIS. Remote Sens. Environ., 113(9), 1976-1987 (doi: 10.1016/j.rse.2009.05.008)
Matzl, M and Schneebeli, M (2006) Measuring specific surface area of snow by near-infrared photography. J. Glaciol., 52(179), 558-564 (doi: 10.3189/172756506781828412)
Matzl, M and Schneebeli, M (2010) Stereological measurement of the specific surface area of seasonal snow types: comparison to other methods, and implications for mm-scale vertical profiling. Cold Reg. Sci. Technol., 64(1), 1-8 (doi: 10.1016/j.coldregions. 2010.06.006)
Mätzler, C (2002) Relation between grain-size and correlation length of snow. J. Glaciol., 48(162), 461-466 (doi: 10.3189/ 172756502781831287)
Mätzler, C (2006) Thermal microwave radiation: applications for remote sensing. Institution of Engineering and Technology, London (IET Electronic Waves Series 52)
Mätzler, C and Wiesmann, A (1999) Extension of the microwave emission model of layered snowpacks to coarse-grained snow. Remote Sens. Environ., 70(3), 317-325 (doi: 10.1016/S0034- 4257(99)00047-4)
Morin, S, Domine, F, Arnaud, L and Picard, G (2010) In-situ monitoring of the time evolution of the effective thermal conductivity of snow. Cold Reg. Sci. Technol., 64(2), 73-80 (doi: 10.1016/j.coldregions.2010.02.008)
Nolin, AW and Dozier, J (2000) A hyperspectral method for remotely sensing the grain size of snow. Remote Sens. Environ., 74(2), 207-216 (doi: 10.1016/S0034-4257(00)00111-5)
Painter, TH, Molotch, NP, Cassidy, M, Flanner, M and Steffen, K (2007) Contact spectroscopy for determination of stratigraphy of snow optical grain size. J. Glaciol., 53(180), 121-127 (doi: 10.3189/ 172756507781833947)
Park, G, Huffaker, DL, Zou, Z, Shchekin, OB and Deppe, DG (1999) Temperature dependence of lasing characteristics for long- wavelength (1.3-^m) GaAs-based quantum-dot lasers. Photon. Technol. Let., 11(3), 301-303
Picard, G, Arnaud, L, Domine, F and Fily, M (2009) Determining snow specific surface area from near-infrared reflectance measurements: numerical study of the influence of grain shape. Cold Reg. Sci. Technol., 56(1), 10-17 (doi: 10.1016/j.coldregions. 2008.10.001)
Pulliainen, J (2006) Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space- borne microwave radiometer data and ground-based observations. Remote Sens. Environ., 101(2), 257-269 (doi: 10.1016/ j.rse.2006.01.002)
Rees, A, Lemmetyinen, J, Derksen, C, Pulliainen, J and English, M (2010) Observed and modelled effects of ice lens formation on passive microwave brightness temperatures over snow covered tundra. Remote Sens. Environ., 114(1), 116-126 (doi: 10.1016/ j.rse.2009.08.013)
Sihvola, A and Tiuri, M (1986) Snow fork for field determination of the density and wetness profiles of a snow pack. IEEE Trans. Geosci. Remote Sens., 24(5), 717-721 (doi: 10.1109/ TGRS.1986.289619)
Taillandier, A-S, Domine, F, Simpson, WR, Sturm, M and Douglas, TA (2007) Rate of decrease of the specific surface area of dry snow: isothermal and temperature gradient conditions. J. Geophys. Res., 112(F3), F03003 (doi: 10.1029/2006JF000514)
Takala, M and 7 others (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115(12), 3517-3529 (doi: 10.1016/ j.rse.2011.08.014)
Tedesco, M and Kim, EJ (2006) Retrieval of dry-snow parameters from microwave radiometric data using a dense-medium model and genetic algorithms. IEEE Trans. Geosci. Remote Sens., 44(8), 2143-2151 (doi: 10.1109/TGRS.2006.872087)
Toure, AM, Go'ta, K, Royer, A, Matzler, C and Schneebeli, M (2008) Near-infrared digital photography to estimate snow correlation length for microwave emission modeling. Appl. Opt., 47(36), 6723-6733 (doi: 10.1364/A0.47.006723)
Warren, SG and Wiscombe, WJ (1980) A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. J. Atmos. Sci., 37(12), 2734-2745 (doi: 10.1175/1520- 0469(1980)037<2734:AMFTSA>2.0.C0;2)
Wiesmann, A and Matzler, C (1999) Microwave emission model of layered snowpacks. Remote Sens. Environ., 70(3), 307-316 (doi: 10.1016/S0034-4257(99)00046-2)
Wiscombe, WJ and Warren, SG (1980) A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci., 37(12), 2712-2733 (doi: 10.11 75/1520-0469(1980)03 7<2 712: AMFTSA>2.0.CO;2)
Xie, Y, Yang, P, Gao, B, Kattawar, G and Mishchenko, M (2006) Effect of ice crystal shape and effective size on snow bidirectional reflectance. J. Quant. Spectrosc. Radiat. Transfer, 100(1-3), 457-469 (doi: 10.1016/j.jqsrt.2005.11.056)
Yang, P and Liou, KN (1996) Geometric-optics-integral- equation method for light scattering by nonspherical ice crystals. Appl. Opt., 35(33), 6568-6584 (doi: 10.1364/ AO.35.006568)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed