Skip to main content
×
×
Home

New technique for access-borehole drilling in shelf glaciers using lightweight drills

  • V. Zagorodnov (a1), S. Tyler (a2), D. Holland (a3), A. Stern (a3), L.G. Thompson (a1), C. Sladek (a2), S. Kobs (a2) and J.P. Nicolas (a1)...
Abstract

This paper describes a new, environmentally friendly drilling technique for making short-and long-term access boreholes in shelf glaciers using lightweight drills. The new drilling technique was successfully developed for installation of small-diameter sensors under the Ross Ice Shelf through ~ 193 m thick ice at Windless Bight, McMurdo Ice Shelf, Antarctica. The two access boreholes were drilled and sensors installed in 110 working hours. The total weight of the drilling equipment including the power system and fuel is <400 kg. Installation of small-diameter sensors was possible for 1.8– 6 hours after penetration through the glacier into the sea water beneath. The new drilling technique does not require drilling fluid and therefore has minimal environmental impact. It should permit access through ice-shelf ice up to 350 m thick, or glaciers on grounded ice or subglacial lakes if there is no water-permeable interface at the base. Modifications, presented in this work, of the drilling equipment and protocol will allow for (1) ~ 21 working hours for penetration through 200 m of ice, (2) installation of sensors up to 120 mm in diameter and (3) drilling long-term open boreholes through 400 m thick ice in 100 working hours.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      New technique for access-borehole drilling in shelf glaciers using lightweight drills
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      New technique for access-borehole drilling in shelf glaciers using lightweight drills
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      New technique for access-borehole drilling in shelf glaciers using lightweight drills
      Available formats
      ×
Copyright
References
Hide All
Bentley, CR and Koci, BR (2007) Drilling to the beds of the Greenland and Antarctic ice sheets: a review. Ann. Glaciol., 47, 19 (doi: 10.3189/172756407786857695)
Blake, EW, Wake, CP and Gerasimoff, MD (1998) The ECLIPSE drill: a field-portable intermediate-depth ice-coring drill. J. Glaciol., 44(146), 175178
Bogorodsky, VV and Morev, VA (1984) Equipment and technology for core driling in moderately cold ice. CRREL Spec. Rep. 84–34, 129132
Browning, JA (1978) Flame-drilling through the Ross Ice Shelf. Northern Eng., 10(1), 48 Carslaw, HS and Jaeger, JC (1959) Conduction of heat in solids. Oxford University Press, Oxford Clough, JW (1973) Radio echo sounding: brine percolation layer. J. Glaciol., 12(64), 141143 Clough, JW (1974) RISP radio-echo soundings. Antarct. J. US, 9(4), 159
Clough, JW and Hansen, BL (1979) The Ross Ice Shelf project. Science, 203(4379), 433434 (doi: 10.1126/science.203.4379.433)
Clow, GD and Koci, B (2002) A fast mechanical-access drill for polar glaciology, paleoclimatology, geology, tectonics and biology. Mem. Natl Inst. Polar Res., Special Issue 56, 53
Craven, M, Allison, I, Fricker, HA and Warner, R (2009) Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. J. Glaciol., 55(192), 717728 (doi: 10.3189/002214309789470941)
Gillet, F (1975) Steam, hot-water and electrical thermal drills for temperate glaciers. J. Glaciol., 14(70), 171179
Hansen, BL (1976) Deep core drilling in the East Antarctica Ice Sheet: a prospectus. In Splettstoesser, JF ed. aIce-core drilling. University of Nebraska Press, Lincoln, NE, 2936 Heine, AJ (1968) Brine in the McMurdo Ice Shelf, Antarctica. New Zeal. J. Geol. Geophys., 11(4), 829839 Hubbard, B, Tison J-L, Pattyn, F, Dierckx, M, Boereboom, T and Samyn, D (2012) Optical-televiewer-based identification and characterization of material facies associated with an Antarctic ice-shelf rift. Ann. Glaciol., 53(60 Pt 2), 137146 (doi: 10.3189/2012AoG60A045)
Hughes, KG, Langhorne, PJ and Williams MJM (2013) Estimates of the refreezing rate in an ice-shelf borehole. J. Glaciol., 59(217), 938948 (doi: 10.3189/2013JoG12J117)
Humphrey, N (1991) Estimating ice temperature from short records in thermally disturbed boreholes. J. Glaciol., 37(127), 414419
Humphrey, N and Echelmeyer, K (1990) Hot-water drilling and bore-hole closure in cold ice. J. Glaciol., 36(124), 287298 (doi:10.3189/002214390793701354)
Iken, A, Echelmeyer, K and Harrison, WD (1989) A light-weight hot water drill for large depth: experiences with drilling on Jakobshavns glacier, Greenland. In Rado, C and Beaudoing, D eds. Ice core drilling. Proceedings of the 3rd International Workshop on Ice Drilling Technology, 10–14 October 1988, Grenoble, France. Laboratoire de Glaciologie et Géophysique de l’Environnement, Centre National de la Recherche Scientifique, Grenoble, 123136
Jezek, KC and Bentley, CR (1983) Field studies of bottom crevasses in the Ross Ice Shelf, Antarctica. J. Glaciol., 29(101), 118126
Koci, BR (1984) Hot water drilling in Antarctic firn, and freezing rates in water-filled boreholes. CRREL Spec. Rep. 84–34, 101103
Kohshima, S, Shiraiwa, T, Godoi, MA, Kubota, K, Takeuchi, N and Shinbori, K (2002) Ice core drilling at Southern Patagonia Icefield – development of a new portable drill and the field expedition in 1999. Mem. Natl Inst. Polar Res., Special Issue 56, 4958
Korotkevich, ES, Savatyugin, LM and Morev, VA (1978) Skvoznoe burenie shelfovogo lednika v raione stantcii Novolazarevskoi [Drilling through the ice shelf in the vicinity of Novolazarevskaya Station]. Inf. Byull. Sov. Antarkt. Eksped., 98, 4952
Kovacs, A, Gow, AJ and Morey, RM (1993) A reassessment of the in-situ dielectric constant of polar firn. CRREL Rep. 9326
LaChapelle, E (1963) A simple thermal ice drill. J. Glaciol., 4(35), 637642
Lange, GR (1973) Deep rotary core drilling in ice. CRREL Tech. Rep. 94 Lange, NA (1961) Handbook of chemistry, 10th edn. McGraw-Hill, New York
Makinson, K (1993) The BAS hot water drill: development and current design. Cold Reg. Sci. Technol., 22(1), 121132 (doi:10.1016/0165–232X(93)90051–9)
Maykut, GA and Light, B (1995) Refractive-index measurements in freezing sea-ice and sodium chloride brines. Appl. Opt., 34(6), 950961 (doi: 10.1364/AO.34.000950)
Mellor, M and Sellmann, PV (1976) General considerations for drill system design. In Splettstoesser, JF ed. Ice-core drilling. University of Nebraska Press, Lincoln, NE, 77111
Morev, VA, Pukhov, VA, Yakovlev, VM and Zagorodnov, VA (1984) Equipment and technology for drilling in temperate glaciers. CRREL Spec. Rep. 84–34, 125127
Morev, VA, Manevskiy, LN, Yakovlev, VM and Zagorodnov, VS (1988) Drilling with ethanol-based antifreeze in Antarctica. In Rado, C and Beaudoing, D eds. Ice core drilling. Proceedings of the Third International Workshop on Ice Drilling Technology, 10–14 October 1988, Grenoble, France. Laboratoire de Glaciologie et Géophysique de l’Environnement, Centre National de la Recherche Scientifique, Grenoble, 110113
Napoléoni JGP and Clarke GKC (1978) Hot water drilling in a cold glacier. Can. J. Earth Sci., 15(2), 316321
Neff, PD, Steig, EJ, Clark, DH, McConnell, JR, Pettit, EC and Menounos, B (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. J. Glaciol., 58(212), 11651175 (doi: 10.3189/2012JoG12J078)
Nizery, A (1951) Electrothermic rig for the boring of glaciers. Eos, 32(1), 6672
Raikovsky YuV, Samoilov OYu, Prony, NP, Smirnov, KY and Arkhipov, SM (1990) Glatciologicheskie issledovaniya na shelfovom lednike Aimery in 1987–1989 gg [Glaciological investigations of the Amery Ice Shelf in 1987–1989]. Mater. Glyatsiol. Issled., 68, 114
Rand, JH (1977) Ross Ice Shelf drilling, October–December 1976. Antarct. J. US, 12(4), 150152 Savatyugin, LM (1980) Glatciolologicheskie issledovaniya na shelfovom lednike Shekltona (yanvar’–fevral’ 1978 g) [Glacio-logical investigations of Shackleton Ice Shelf (January–April) 1978]. Sov. Antarct. Exped. Inf. Bull., 100, 114118
Shabtaie, S and Bentley, CR (1982) Tabular icebergs: implications from geophysical studies of ice shelves. J. Glaciol., 28(100), 413430
Shreve, RL and Sharp, RP (1970) Internal deformation and thermal anomalies in lower Blue Glacier, Mount Olympus, Washington, U.S.A. J. Glaciol., 9(55), 6586
Sochet, I and Gillard, P (2002) Flammability of kerosene in civil and military aviation. J. Loss Prev. Process Ind., 15(5), 335345 (doi:10.1016/S0950–4230(02)00031–1)
Stern, AA, Dinniman, MS, Zagorodnov, V, Tyler, SW and Holland, DM (2013) Intrusion of warm surface water beneath the McMurdo Ice Shelf, Antarctica. J. Geophys. Res., 118(12), 70367048 (doi: 10.1002/2013JC008842)
Talalay, PG and Gundestrup, NS (2002) Hole fluids for deep ice core drilling. Mem. Natl Inst. Polar Res., Special Issue 56, 148170
Taylor, PL (1976) Solid-nose and coring thermal drills for temperate ice. In Splettstoesser, JF ed. Ice-core drilling. University of Nebraska Press, Lincoln, NE, 167177
Thorsteinsson, T, Sigurðsson O, Jóhannesson T, Larsen, G, Drücker C and Wilhelms, F (2003) Ice core drilling on the Hofsjökull ice cap. Jökull, 51, 2541
Tien, C and Yen Y-c (1975) An approximate analysis of melting and freezing of a drill hole through an ice shelf in Antarctica. J. Glaciol., 14(72), 421432
Treverrow, A, Warner, RC, Budd, WF and Craven, M (2010) Meteoric and marine ice crystal orientation fabrics from the Amery Ice Shelf, East Antarctica. J. Glaciol., 56(199), 877890 (doi:10.3189/002214310794457353)
Tyler, SW and 8 others (2013) Using distributed temperature sensors to monitor an Antarctic ice shelf and sub-ice shelf cavity. J. Glaciol., 59(215), 583591 (doi: 10.3189/2013JoG12J207) Vaughan, DG, Mantripp, DR, Sievers, J and Doake CSM (1993) A synthesis of remote sensing data on Wilkins Ice Shelf, Antarctica. Ann. Glaciol., 17, 211218
Ward, WH (1952) The glaciological studies of the Baffin Island Expedition, 1950. Part III: Equipment and techniques. J. Glaciol., 2(12), 115–121/117
Wolfe, LS and Hoult, DP (1974) Effects of oil under sea ice. J. Glaciol., 13(69), 473488
Zagorodnov, VS, Kelley, JJ and Nagornov, OV (1994a) Drilling of glacier boreholes with a hydrophilic liquid. Mem. Natl Inst. Polar Res., Special Issue 49, 153164
Zagorodnov, VS, Morev, VA, Nagornov, OV, Kelley, JJ, Gosink, TA and Koci, BR (1994b) Hydrophilic liquid in glacier boreholes. Cold Reg. Sci. Technol., 22(3), 243251 (doi: 10.1016/0165–232X(94)90003–5)
Zagorodnov, V, Thompson, LG, Kelley, JJ, Koci, B and Mikhalenko, V (1998) Antifreeze thermal ice core drilling: an effective approach to the acquisition of ice cores. Cold Reg. Sci. Technol., 28(1998), 189202 (doi: 10.1016/S0165–232X(98)00019–6)
Zagorodnov, V, Thompson, LG and Mosley-Thompson, E (2000) Portable system for intermediate-depth ice-core drilling. J. Glaciol., 46(152), 167172 (doi: 10.3189/172756500781833304)
Zagorodnov, V, Thompson, LG, Ginot, P and Mikhalenko, V (2005) Intermediate-depth ice coring of high-altitude and polar glaciers with a lightweight drilling system. J. Glaciol., 51(174), 491501 (doi: 10.3189/172756505781829269)
Zotikov, IA (1979) Antifreeze-thermodrilling for core through the central part of the Ross Ice Shelf (J-9 Camp), Antarctica. CRREL Rep. 7924
Zotikov, IA, Zagorodnov, VS and Raikovsky, JV (1980) Core drilling through the Ross Ice Shelf (Antarctica) confirmed basal freezing. Science, 207(4438), 14631465 (doi: 10.1126/science.207.4438.1463)
Zumberge, JH (1971) Ross Ice Shelf Project: drilling in and below ice will reveal physical, chemical, biological features. Antarct. J. US, 6(6), 258263
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 22
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 18th August 2018. This data will be updated every 24 hours.