Skip to main content

Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK


To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Katherine Boldt Love <>
Hide All
Alley, R (1991) Sedimentary processes may cause fluctuations of tidewater glaciers. Ann. Glaciol., 15, 119124
Alley, RB, Lawson, DE, Larson, GJ, Evenson, EB and Baker, GS (2003) Stabilizing feedbacks in glacier-bed erosion. Nature, 424(6950), 758760 (doi: 10.1038/nature01839)
Alley, RB, Anandakrishnan, S, Dupont, TK, Parizek, BR and Pollard, D (2007) Effect of sedimentation on ice-sheet grounding line stability. Science, 315, 18381841 (doi: 10.1126/science.1138396)
Berger, AL and 10 others (2008) Quaternary tectonic response to intensified glacial erosion in an orogenic wedge. Nat. Geosci., 1(11), 793799 (doi: 10.1038/ngeo334, 2008)
Berthier, E, Schiefer, E, Clarke, GKC, Menounos, B and Remy, F (2010) Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery. Nat. Geosci., 3(2), 9295 (doi: 10.1038/ ngeo737)
Bindschadler, RA and Rasmussen, LA (1983) Finite-difference model predictions of the drastic retreat of Columbia Glacier, Alaska. USGS Professional Paper, 1258-D
Bornhold, BD, Ren, P and Prior, DB (1994) High-frequency turbidity currents in British Columbia fjords. Geo-Mar. Lett., 14(4), 238243
Bowman, AW and Azzalini, A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-plus illustrations. Oxford University Press, New York
Brown, CS, Meier, MF and Post, A (1982) Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. USGS Professional Paper, 1258-C
Brown, CS, Rasmussen, LA and Meier, MF (1986) Bed topography inferred from airborne radio-echo sounding of Columbia Glacier, Alaska. USGS Professional Paper, 1258-G
Cai, J, Powell, RD, Cowan, EA and Carlson, PR (1997) Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska. Mar. Geol., 143, 537
Calkin, PE, Wiles, GC and Barclay, DJ (2001) Holocene coastal deglaciation of Alaska. Quat. Sci. Rev., 20, 449461 (doi: 10.1016/S0277-3791(00)00105-0)
Carlson, P (1989) Seismic reflection characteristics of glacial and glacimarine sediment in the Gulf of Alaska and adjacent fjords. Mar. Geol., 85, 391416
Cogley, JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann. Glaciol., 50, 96100
Cowan, EA and Powell, RD (1991) Ice-proximal sediment accumulation rates in a temperate glacial fjord, southeastern Alaska. In Anderson, JB and Ashley, GM eds. Glacial marine sedimentation; paleoclimatic significance, Boulder, CO. Geol. Soc. Am., Special Paper 261, 6173
Cowan, EA and 5 others (2010) Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. Geol. Soc. Am. Bull., 122(7–8), 10671080 (doi: 10.1130/B26595.1)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Curran, KJ and 5 others (2004) Fine-grained sediment flocculation below the Hubbard Glacier meltwater plume, Disenchantment Bay, Alaska. Mar. Geol., 203(1–2), 8394 (doi: 10.1016/S0025-3227(03)00327-X)
Fu-Xing, H, Jian-Guo, S and Kun, W (2012) The influence of sea water velocity variation on seismic travel times, ray paths, and amplitude. Appl. Geophy., 9(3), 319325 (doi: 10.1007/s11770-012-0344-2)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Goff, JA, Lawson, DE, Willems, BA, Davis M and Gulick, SPS (2012) Morainal bank progradation and sediment accumulation in Disenchantment Bay, Alaska: Response to advancing Hubbard Glacier. J Geophys. Res., 117(F02031), 115 (doi: 0.1029/2011JF002312)
Hallet, B (1979) A theoretical model of glacial abrasion. J. Glaciol., 23, 3950
Hallet, B, Hunter, L and Bogen, J (1996) Rates of erosion and sediment evacuation by glaciers: a review of field data and their implications. Glob. Planet. Change, 12(1–4), 213235 (doi: 10.1016/0921-8181(95)00021-6)
Harbor, J (1992) Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull., 104, 13641375 (doi: 10.1130/0016-7606(1992)104<1364)
Headley, RM, Enkelmann, E and Hallet, B (2013) Examination of the interplay between glacial processes and exhumation in the Saint Elias Mountains, Alaska. Geosphere, 9(2), 229241 (doi: 10.1130/GES00810.1)
Hill, PS, Syvitski, JP, Cowan, EA and Powell, RD (1998) In situ observations of floc settling velocities in Glacier Bay, Alaska. Mar. Geol., 145, 8594
Hooke, R (1991) Positive feedbacks associated with erosion of glacial cirques and overdeepenings. Geol. Soc. Am. Bull., 103(8), 11041108 (doi: 10.1130/0016-7606(1991)103<1104)
Howat, IM, Joughin, I and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 15591561 (doi: 10.1126/science.1138478)
Humphrey, N, Kamb, B and Fahnestock, M (1993) Characteristics of the bed of the lower Columbia Glacier, Alaska. J. Geophys. Res., 98, 837846
Humphrey, NF and Raymond, CF (1994) Hydrology, erosion and sediment production in a surging glacier: Variegated Glacier, Alaska, 1982–83. J. Glaciol., 40, 539552
Hunter, L, Powell, R and Lawson, D (1996) Flux of debris transported by ice at three Alaskan tidewater glaciers. J. Glaciol., 42(140), 123135
Iverson, NR (1991) Potential effects of subglacial water-pressure fluctuations on quarrying. J. Glaciol., 37(125), 2736
Jaeger, JM and Nittrouer, CA (1999) Sediment deposition in an Alaskan fjord; controls on the formation and preservation of sedimentary structures in Icy Bay. J. Sediment. Res., 69(5), 10111026
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 22792294 (doi: 10.1175/JPO-D-11-03.1)
Joughin, I, Smith, B and Medley, B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344, 735738 (doi: 10.1126/science.1249055)
Kamb, B, Engelhardt, H and Fahnestock, M (1994) Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier 2. Interpretation. J. Geophys. Res., 99(B8), 1523115244
Koppes, MN and Hallet, B (2002) Influence of rapid glacial retreat on the rate of erosion by tidewater glaciers. Geology, 30(1), 4750 (doi: 10.1130/0091-7613(2002)030<0047:IORGRO>2.0.CO;2)
Koppes, MN and Hallet, B (2006) Erosion rates during rapid deglaciation in Icy Bay, Alaska. J. Geophys. Res., 111(F2), 111 (doi: 10.1029/2005JF000349)
Krimmel, RM (2001) Photogrammetric data set, 1957–2000, and bathymetric measurements for Columbia Glacier, Alaska. USGS Water-Resour. Inves. Rep., 01-4089
Lemke, P and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon, S and 7 others eds. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Luckman, A, Murray, T, de Lange, R and Hanna, E (2006) Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett., 33(3), 25 (doi: 10.1029/2005GL025428)
Mayo, LR, Trabant, DC, March, R and Haeberli, W (1979) Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year. USGS Open File Rep., 79-1168
McNabb, RW and 11 others (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J. Glaciol., 58(212), 11511164 (doi: 10.3189/2012JoG11J249)
Meier, MF and Post, A (1987) Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058
Meier, MF, Rasmussen, LA and Miller, DS (1985a) Columbia glacier in 1984: disintegration underway. USGS Open File Rep., 85–81, 17pp
Meier, MF, Rasmussen, LA, Krimmel, RM, Olsen, RW and Frank, D (1985b) Photogrammetric determination of surface altitude, terminus position, and ice velocity of Columbia Glacier, Alaska. USGS Professional Paper, 1258-F
Meier, M and 9 others (1994) Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier, 1. Observations. J. Geophys. Res., 99(B8), 1521915229
Meier, MF and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317, 10641067 (doi: 10.1126/science.1143906)
Michalchuk, BR and 5 others (2009) Holocene climate and glacial history of the northeastern Antarctic Peninsula: the marine sedimentary record from a long SHALDRIL core. Quat. Sci. Rev., 29, 30493065 (doi: 10.1016/j.quascirev.2009.08.012)
Milliken, KT, Anderson, JB, Wellner, JS, Bohaty, SM and Manley, PL (2009) High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geol. Soc. Am. Bull., 121(11–12), 17111725 (doi: 10.1130/B26478.1)
Motyka, RJ, Truffer, M, Kuriger, EM and Bucki, AK (2006) Rapid erosion of soft sediments by tidewater glacier advance: Taku Glacier, Alaska, USA. Geophys. Res. Lett., 33(24), 15 (doi: 10.1029/2006GL028467)
Motyka, RJ, Dryer, WP, Amundson, J, Truffer, M and Fahnestock, M (2013) Rapid submarine melting driven by subglacial discharge, LeConte Glacier, Alaska. Geophys. Res. Lett., 40(19), 51535158 (doi: 10.1002/grl.51011)
Mugford, RI and Dowdeswell, JA (2011) Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res., 116(F1), 120 (doi: 10.1029/2010JF001735)
Mulder, T and Syvitski, JPM (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J. Geol., 103(3), 285299
Nick, FM, van der Veen, CJ and Oerlemans, J (2007) Controls on advance of tidewater glaciers: results from numerical modeling applied to Columbia Glacier. J. Geophys. Res., 112(F3), 111 (doi: 10.1029/2006JF000551)
Noll, GT (2005) Report of equipment and methods to accompany data from Project OPR-P132-RA-05, Eastern Prince William Sound, AK. National Oceanographic and Atmospheric Administration. National Geophysical Data Center, National Ocean Service, Boulder, CO. Columbia Bay Hydrographic Survey RAP Sheets H11493/H11494
O'Neel, S, Pfeffer, WT, Krimmel, RM and Meier, M (2005) Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res., 110(F3), 118 (doi: 10.1029/2005JF000292)
O'Neel, S, Marshall, HP, McNamara, DE and Pfeffer, WT (2007) Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. J. Geophys. Res., 112(F3), 114 (doi: 10.1029/2006JF000595)
O'Neel, S and 6 others (2013) High space-time resolution analysis of ice motion at a rapidly retreating tidewater glacier. In Abstract C42B-05 Presented at 2013, Fall Meeting, AGU, San Francisco, CA, 9–13
O'Neel, S and 12 others (2015) Icefield-to-Ocean linkages across the Northern Pacific Coastal Temperate Rainforest Ecosystem. BioSciences, 65(5), 499512 (doi: 10.1093/biosci/biv027)
Pearce, JT and 6 others (2003) Bedload component of glacially discharged sediment: insights from the Matanuska Glacier, Alaska. Geology, 31(1), 7 (doi: 10.1130/0091-7613(2003)031<0007:BCOGDS>2.0.CO;2)
Pelto, MS and Warren, C (1991) Relationship between tidewater glacier calving velocity and water depth at the calving front. Ann. Glaciol., 15, 115118
Pfeffer, WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3), 112 (doi: 10.1029/2006JF000590)
Pfeffer, W, Cohn, J and Meier, M (2000) Alaskan glacier beats a dramatic retreat. EOS, Trans. Am. Geophys. Union, 81(48), 577584
Post, A, O'Neel, S, Motyka, R and Streveler, G (2011) A complex relationship between calving glaciers and climate. EOS, Trans. Am. Geophys. Union, 92(37), 305306
Powell, RD (1991) Grounding-line systems as second-order controls on fluctuations of tidewater termini of temperate glaciers. In Anderson, JB and Ashley, GM eds. Glacial Marine Sedimentation; Paleoclimatic Significance, Geol. Soc. Am., Special Paper 26, 175193
Powell, RD and Molnia, BF (1989) Glacimarine sedimentary processes, facies and morphology of the south-southeast Alaska shelf and fjords. Mar. Geol., 85(2–4), 359390
Prior, DB, Bornhold, BD, Wiseman, WJ and Lowe, DR (1987) Turbidity current activity in a British Columbia fjord. Science, 237(4820), 13301333 (doi: 10.1126/science.237.4820.1330)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Radić, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat. Geosci., 4(2), 9194 (doi: 10.1038/ngeo1052)
Rasmussen, LA (1989) Surface velocity variations of the lower part of Columbia Glacier, Alaska, 1977–1981. USGS Professional Paper, 1258-H
Rasmussen, LA and Meier, MF (1982) Continuity equation model of the predicted drastic retreat of Columbia Glacier, Alaska. USGS Professional Paper, 1258-A
Rasmussen, LA and Meier, MF (1985) Surface topography of the lower part of Columbia Glacier, Alaska. USGS Professional Paper, 1258-E
Rasmussen, LA, Conway, H, Krimmel, RM and Hock, R (2011) Surface mass balance, thinning and iceberg production, Columbia Glacier, Alaska, 1948–2007. J. Glaciol., 57(203), 431440
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5763), 986990 (doi: 10.1126/science.1121381)
Rignot, E, Mouginot, J, Larsen, CF, Gim, Y and Kirchner, D (2013) Low-frequency radar sounding of temperate ice masses in Southern Alaska. Geophys. Res. Let., 40, 53995405 (doi: 10.1002/2013GL057452)
Rignot, E, Mouginot, J, Morlinghem, M, Seroussi, H and Scheuchi, B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Let., 41 (doi: 10.1002/2014GL060140)
Riihimaki, CA, Macgregor, KR, Anderson, RS, Anderson, SP and Loso, MG (2005) Sediment evacuation and glacial erosion rates at a small alpine glacier. J. Geophys. Res., 110, 117 (doi: 10.1029/2004JF000189)
Rothlisberger, H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203
Schoof, C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Seramur, KC, Powell, RD and Carlson, PR (1997) Evaluation of conditions along the grounding line of temperate marine glaciers: an example from Muir Inlet, Glacier Bay, Alaska. Mar. Geol., 140(704), 307327
Sheaf, MA, Serpa, L and Pavlis, TL (2003) Exhumation rates in the St. Elias Mountains, Alaska. Tectonophysics, 367(1–2), 111 (doi: 10.1016/S0040-1951(03)00124-0)
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Shreve, R (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205214
Sikonia, WG (1982) Finite element glacier dynamics model applied to Columbia Glacier, Alaska. USGS Professional Paper, 1258, B1–B74
Straneo, F and 15 others (2013) Challenges to understanding the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. B. Am. Meteorol. Soc., 94(8), 11311144 (doi: 10.1175/BAMS-D-12-00100.1.)
Swift, DA, Nienow, PW and Hoey, TB (2005) Basal sediment evacuation by subglacial meltwater: suspended sediment transport from Haut Glacier d'Arolla, Switzerland. Earth Surf. Proc. Land., 30(7), 867883 (doi: 10.1002/esp.1197)
Syvitski, JPM (1989) On the deposition of sediment within glacier-influenced fjords: oceanographic controls. Mar. Geol., 85, 301329
Syvitski, JPM, Burrell, DC and Skei, JM (1987) Fjords: processes and products. Springer, New York
van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326, 984986 (doi: 10.1126/science.1178176)
Walter, F and 5 others (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett., 37(15), 15 (doi: 10.1029/2010GL043201)
Weingartner, TJ, Danielson, SL and Royer, TC (2005) Freshwater variability and predictability in the Alaska coastal current. Deep-Sea Res. Pt. II, 52, 169191
Willems, BA, Powell, RD, Cowan, EA and Jaeger, JM (2011) Glacial outburst flood sediments within Disenchantment Bay, Alaska: implications of recognizing marine jökulhlaup deposits in the stratigraphic record. Mar. Geol., 284(1–4), 112 (doi: 10.1016/j.margeo.2011.03.004)
Winkler, GR (1992) Geologic map and summary geochronology of the Anchorage 1°x3° quadrangle, southern Alaska. USGS Miscellaneous Investigations Map 1–2283
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *