Skip to main content
×
×
Home

Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya

  • Tong Zhang (a1) (a2), Cunde Xiao (a1) (a3), William Colgan (a4) (a5), Xiang Qin (a1), Wentao Du (a1), Weijun Sun (a1) (a2), Yushuo Liu (a1) and Minghu Ding (a1) (a3)...
Abstract

Knowledge of present-day ice temperature and velocity is important in order to determine how fast a glacier will respond to present and future climate change. We apply a two-dimensional higher-order thermomechanical flowband model to simulate present-day ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya. We use recent (2005–11) observational data to validate the numerical model. Modelled and observed ice surface velocities exhibit good agreement. Modelled ice temperatures agree well with observed values in two shallow boreholes that are ∼18 m deep. The model suggests that the ablation zone of East Rongbuk Glacier, km 4 to km 10 from the glacier head, is underlain by temperate ice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Observed and modelled ice temperature and velocity along the main flowline of East Rongbuk Glacier, Qomolangma (Mount Everest), Himalaya
      Available formats
      ×
Copyright
References
Hide All
Adhikari, S and Huybrechts, P (2009) Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya. Ann. Glaciol., 50(52), 2740 (doi: 10.3189/172756409789624346)
Adhikari, S and Marshall, SJ (2011) Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor. J. Glaciol., 57(206), 10031016 (doi: 10.3189/002214311798843449)
Adhikari, S and Marshall, SJ (2012) Parameterization of lateral drag in flowline models of glacier dynamics. J. Glaciol., 58(212), 11191132 (doi: 10.3189/2012JoG12J018)
Barnett, TP, Adam, JC and Lettenmaier, DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303309 (doi: 10.1038/nature04141)
Bartholomaus, TC, Anderson, RS and Anderson, SP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337 (doi: 10.1038/ngeo.2007.52)
Blatter, H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333344
Blatter, H and Hutter, K (1991) Polythermal conditions in Arctic glaciers. J. Glaciol., 37(126), 261269
Bradford, JH, Nichols, J, Mikesell, TD and Harper, JT (2009) Continuous profiles of electromagnetic wave velocity and water content in glaciers: an example from Bench Glacier, Alaska, USA. Ann. Glaciol., 50(51), 19 (doi: 10.3189/172756409789097540)
Colgan, W and 6 others (2012) The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 2. Observed and modeled ice flow. J. Glaciol., 58(207), 5164 (doi: 10.3189/2012JoG11J081)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
De Smedt, B, Pattyn, F and De Groen, P (2010) Using the unstable manifold correction in a Picard iteration to solve the velocity field in higher-order ice-flow models. J. Glaciol., 56(196), 257 261 (doi: 10.3189/002214310791968395)
Flowers, GE, Björnsson, H, Geirsdóttir, Á, Miller, GH and Clarke, GKC (2007) Glacier fluctuation and inferred climatology of Langjökull ice cap through the Little Ice Age Quat. Sci. Rev., 26 (19–21), 23372353 (doi: org/10.1016/jquascirev2007.07.016)
Flowers, GE, Roux, N, Pimentel, S and Schoof, CG (2011) Present dynamics and future prognosis of a slowly surging glacier. Cryosphere, 5(1), 299313 (doi: 10.5194/tc-5-299-2011)
Fountain, AG and Walder, JS (1998) Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328 (doi: 10.1029/97RG03579)
Funk, M, Echelmeyer, K and Iken, A (1994) Mechanisms of fast flow in Jakobshavns Isbræ, West Greenland: Part II. Modeling of englacial temperatures. J. Glaciol., 40(136), 569585
Gagliardini, O, Cohen, D, Råback, P and Zwinger, T (2007) Finite-element modeling of subglacial cavities and related friction law. J. Geophys. Res., 112(F2), F02027 (doi: 10.1029/2006JF000576)
Gao, D (1980) Report on scientific expedition to Mt Qomolangma area (1975) – meteorology and environment. Science Press, Beijing [in Chinese]
Graf, WL (1970) The geomorphology of the glacial valley cross section. Arct. Alp. Res., 2(4), 303312
Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer, Dordrecht
Harbor, JM (1992) Numerical modeling of the development of U-shaped valleys by glacial erosion. Geol. Soc. Am. Bull., 104(10), 13641375 (doi: 10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2)
Harbor, JM (1995) Development of glacial-valley cross sections under conditions of spatially variable resistance to erosion. Geomorphology, 14(2), 99107 (doi: 10.1016/0169-555X(95)00051-1)
Hock, R (2003) Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115 (doi: 10.1016/S0022-1694(03)00257-9)
Hou, S and 9 others (2007) Summer temperature trend over the past two millennia using air content in Himalayan ice. Climate Past, 3(1), 8995 (doi: 10.5194/cp-3-89-2007)
Huang, M (1999) Forty years’ study of glacier temperature in China. J. Glaciol. Geocryol., 21(3), 193199 [in Chinese with English summary]
Huss, M, Funk, M and Ohmura, A (2009) Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophys. Res. Lett., 36(23), L23501 (doi: 10.1029/2009GL040789)
Immerzeel, WW, Van Beeke, LPH and Bierkens, MFP (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385 (doi: 10.1126/science.1183188)
Irvine-Fynn, TDL, Moorman, BJ, Williams, JLM and Walter, FSA (2006) Seasonal changes in ground-penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surf. Process. Landf., 31(7), 892909 (doi: 10.1002/esp.1299)
Kang, S, Qin, D, Mayewski, PA, Wake, CP and Ren, J (2001) Climatic and environmental records from the Far East Rongbuk ice core, Mt. Qomolangma (Everest). Episodes, 24(3), 176181
Lanzhou Institute of Glaciology and Geocryology (LIGG) (1988) An introduction to the glaciers in China. Science Press, Beijing [in Chinese]
Liu, W (2010) Hydrometeorological characteristics and runoff simulation in the Rongbuk Glacier catchment in Mt. Qomolangma, central Himalayas, China. (PhD thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences)
Naito, N, Nakawo, M, Kadota, T and Raymond, CF (2000) Numerical simulation of recent shrinkage of Khumbu Glacier, Nepal Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 245254
Nye, JF (1959) The motion of ice sheets and glaciers. J. Glaciol., 3(26), 493507
Pattyn, F (2002) Transient glacier response with a higher-order numerical ice-flow model. J. Glaciol., 48(162), 467477 (doi: 10.3189/172756502781831278)
Pattyn, F (2003) A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382 (doi: 10.1029/2002JB002329)
Pellicciotti, F, Brock, BW, Strasser, U, Burlando, P, Funk, M and Corripio, JG (2005) An enhanced temperature-index glacier melt model including shortwave radiation balance: development and testing for Haut Glacier d’Arolla, Switzerland. J. Glaciol., 51(175), 573587 (doi: 10.3189/172756505781829124)
Pimentel, S, Flowers, GE and Schoof, CG (2010) A hydrologically coupled higher-order flowband model of ice dynamics with a Coulomb friction sliding law. J. Geophys. Res., 115(F4), F04023 (doi: 10.1029/2009JF001621)
Schoof, C (2005) The effect of cavitation on glacier sliding. Proc. R. Soc. London, Ser. A, 461(2055), 609627 (doi: 10.1098/rspa.2004.1350)
Svensson, H (1959) Is the cross-section of a glacial valley a parabola? J. Glaciol., 3(25), 362363
Tibetan Scientific Expedition of the Chinese Academy of Sciences (TSECAS) (1975) Monograph on Mount Qomolangma scientific expedition (1966–1968): modern glacier and geomorphology. Science Press, Beijing [in Chinese]
Van der Veen, CJ and Whillans, IM (1989) Force budget: I. Theory and numerical methods. J. Glaciol., 35(119), 5360
Xu, J and 6 others (2009) Records of volcanic events since AD 1800 in the East Rongbuk ice core from Mt. Qomolangma. Chinese Sci. Bull., 54(8), 14111416 (doi: 10.1007/sf1434-009-0020-y) [in Chinese]
Yang, X, Zhang, T, Qin, D, Kang, S and Qin, X (2011) Characteristics and changes in air temperature and glacier’s response on the north slope of Mt. Qomolangma (Mt. Everest). Arct. Antarct. Alp. Res., 43(1), 147160 (doi: 10.1657/1938-4246-43.1.147)
Ye, Q, Zhong, Z, Kang, S, Stein, A, Wei, Q and Liu, J (2009) Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China. J. Mt. Sci. [China], 6, 211220 (doi: 10.1007/s11629-009-1016-4)
Zhang, T, Xiao, C, Qin, X, Hou, D and Ding, M (2012) Ice thickness observation and landform study of East Rongbuk glacier, Mt. Qomolangma. J. Glaciol. Geocryol., 34(5), 10591066 [in Chinese with English summary]
Zwinger, T and Moore, JC (2009) Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard. Cryosphere, 3(2), 217229 (doi: 10.5194/tc-3-217-2009)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×