Skip to main content
×
×
Home

Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya

  • A. Sakai (a1), K. Nishimura (a1), T. Kadota (a2) and N. Takeuchi (a3)
Abstract

Field surveys of supraglacial ponds on debris-covered glaciers in the Nepal Himalaya clarify that ice-cliff calving occurs when the fetch exceeds ∼80 m. Thermal undercutting is important for calving processes in glacial lakes, and subaqueous ice melt rates during the melt and freeze seasons are therefore estimated under simple geomorphologic conditions. In particular, we focus on the differences between valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate when the fetch is >20 m and water temperature is 2–4°C. Calculations suggest the onset of calving due to thermal undercutting is controlled by water currents driven by winds at the surface of the lake, which develop with expanding water surface.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya
      Available formats
      ×
Copyright
References
Hide All
Ageta, Y., Iwata, S., Yabuki, H., Naito, N., Sakai, A. and Narama, S.. 2000. Expansion of glacier lakes in recent decades in the Bhutan Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 165175.
Aoki, T. and Asahi, K.. 1998. Topographical map of the ablation area of the Lirung Glacier in the Langtang Valley, Nepal Himalaya. Bull. Glacier Res., 16, 1931.
Benn, D.I., Wiseman, S. and Warren, C.R.. 2000. Rapid growth of a supraglacial lake, Ngozumpa Glacier, Khumbu Himal, Nepal. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 177185.
Benn, D.I., Wiseman, S. and Hands, K.A.. 2001. Growth and drainage of supraglacial lakes on the debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol., 47(159), 626638.
Benn, D.I., Hulton, N.R.J. and Mottram, R.H.. 2007. ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46, 123130.
Chikita, K.A. 2007. Topographic effects on the thermal structure of Himalayan glacial lakes: observations and numerical simulation of wind. J. Asian Earth Sci., 30(2), 344352.
Chikita, K., Yamada, T., Sakai, A. and Ghimire, R.P.. 1997. Hydrodynamic effects on the basin expansion of Tsho Rolpa glacier lake in the Nepal Himalaya. Bull. Glacier Res.,15, 5969.
Chikita, K., Jha, J. and Yamada, T.. 1999. Hydrodynamics of a supraglacial lake and its effect on the basin expansion: Tsho Rolpa, Rolwaling Valley, Nepal Himalaya. Arct. Antarct. Alp. Res., 31(1), 5870.
Costa, J.E. and Schuster, R.L.. 1988. The formation and failure of natural dams. Geol. Soc. Am. Bull., 100(7), 10541068.
Diolaiuti, G., Kirkbride, M.P., Smiraglia, C., Benn, D.I., D’Agata, C. and Nicholson, L.. 2005. Calving processes and lake evolution at Miage glacier, Mont Blanc, Italian Alps. Ann. Glaciol., 40, 207214.
Eijpen, K.J., Warren, C.R. and Benn, D.I.. 2003. Subaqueous melt rates at calving termini: a laboratory approach. Ann. Glaciol., 36, 179183.
Fujita, K., Suzuki, R., Nuimura, T. and Sakai, A.. 2008. Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J. Glaciol., 54(185), 220228.
Haresign, E. and Warren, C.R.. 2005. Melt rates at calving termini: a study at Glaciar León, Chilean Patagonia. In Harris, C. and Murton, J. B., eds. Cryospheric systems: glaciers and permafrost. London, Geological Society. (Geological Society Special Publication 242.)
Inoue, J. 1976. Climate of Khumbu Himal. Seppyo, J. Jpn. Soc. Snow Ice, Special Issue 38, 6673.
Iwata, S., Watanabe, O. and Fushimi, H.. 1980. Surface morphology in the ablation area of the Khumbu Glacier. Seppyo, J. Jpn. Soc. Snow Ice, Special Issue 41, 917.
Iwata, S., Aoki, T., Kadota, T., Seko, K. and Yamaguchi, S.. 2000. Morphological evolution of the debris cover on Khumbu Glacier, Nepal, between 1978 and 1995. IAHS Publ. 264 (Symposium at Seattle, 2000 – Debris-Covered Glaciers), 311.
Iwata, S., Ageta, Y., Naito, N., Sakai, A. and Narama, C.. 2002. Glacial lakes and their outburst flood assessment in the Bhutan Himalaya. Global Environ. Res., 6(1), 317.
Josberger, E.G. and Neshyba, S.. 1980. Iceberg melt-driven convection inferred from field measurements of temperature. Ann. Glaciol., 1, 113117.
Kirkbride, M.P. 1993. The temporal significance of transitions from melting to calving termini at glaciers in the central Southern Alps of New Zealand. Holocene, 3(3), 232240.
Kirkbride, M.P. and Warren, C.R.. 1997. Calving processes at a grounded ice cliff. Ann. Glaciol., 24, 116121.
Komori, J., Gurung, D.R., Iwata, S. and Yabuki, H.. 2004. Variation and lake expansion of Chubda Glacier, Bhutan Himalayas, during the last 35 years. Bull. Glaciol. Res., 21, 4955.
Lanzhou Institute of Glaciology and Geocryology (LIGG), Water and Energy Commission Secretariat (WECS) and Nepal Electricity Authority (NEA). 1988. Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-un Koshi) river basins, Xizang (Tibet), China, ed. Liu, C. and Sharma, C. K.. Beijing, Science Press.
Liestøl, O. 1956. Glacier dammed lakes in Norway. Nor. Geogr. Tidsskr., 15(3–4), 122149.
Lliboutry, L. 1977. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru: II. Movement of a covered glacier embedded within a rock glacier. J. Glaciol., 18(79), 255273.
Lliboutry, L., Arnao, B.M., Pautre, A. and Schneider, B.. 1977a. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru: I. Historical failures of morainic dams, their causes and prevention. J. Glaciol., 18(79), 239254.
Lliboutry, L., Arnao, B.M. and Schneider, B.. 1977b. Glaciological problems set by the control of dangerous lakes in the Cordillera Blanca, Peru: III. Study of moraines and mass balances at Safuna. J. Glaciol., 18(79), 275290.
Martin, S., Josberg, E. and Kaufmann, P.. 1978. Wave-induced heat transfer to an iceberg. In Husseiny, A.A., ed. Iceberg utilization. New York, Pergamon Press, 260263.
Moribayashi, S. 1974. On the characteristics of the glaciers in the Himalaya and their recent variations. Seppyo, J. Jpn. Soc. Snow Ice, 36(1), 1121. [In Japanese with English summary.]
Nepal: Survey Department. 1997. Sagamartha. (Scale 1 50 000.) Kathmandu, HM Government of Nepal. Survey Department. (Sheet No. 2786 04.)
Petrov, M.P., Terzhevik, A.Yu., Zdorovennov, R.E. and Zdorovennova, G.E.. 2007. Motion of water in an ice-covered shallow lake. Water Resour., 34(2), 113122.
Post, A. and Mayo, L.R.. 1971. Glacier dammed lakes and outburst floods in Alaska. USGS Hydrol. Invest. Atlas HA-455.
Quincey, D.J., Lucas, R.M., Richardson, S.D., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M.. 2005. Optical remote sensing techniques in high-mountain environments: application to glacial hazards. Progr. Phys. Geogr., 29(4), 475505.
Quincey, D.J. and 6 others. 2007. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet. Change, 56(1–2), 137152.
Rana, B., Shrestha, A.B., Reynolds, J.M., Aryal, R., Pokhrel, A.P. and Budhathoki, K.P.. 2000. Hazard assessment of the Tsho Rolpa Glacier Lake and ongoing remediation measures. J. Nepal Geol. Soc., 22, 563570.
Reynolds, J.M. 1999. Glacial hazard assessment at Tsho Rolpa, Rolwaling, central Nepal. Q. J. Eng. Geol., 32(3), 209214.
Richardson, S.D. and Reynolds, J.M.. 2000. An overview of glacial hazards in the Himalayas. Quat. Int., 65/66(1), 3147.
Röhl, K. 2006. Thermo-erosional notch development at fresh-watercalving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203213.
Röhl, K. 2008. Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J. Glaciol., 54(188), 867880.
Russell-Head, D.S. 1980. The melting of free-drifting icebergs. Ann. Glaciol., 1, 119122.
Sakai, A., Nakawo, M. and Fujita, K.. 1998. Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bull. Glacier Res., 16, 5766.
Sakai, A., Chikita, K. and Yamada, T.. 2000a. Expansion of a moraine-dammed glacial lake, Tsho Rolpa, in Rolwaling Himal, Nepal Himalaya. Limnol. Oceanogr., 45(6), 14011408.
Sakai, A., Takeuchi, N., Fujita, K. and Nakawo, M.. 2000b. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 119130.
Sakai, A., Nakawo, M. and Fujita, K.. 2002. Distribution characteristics and energy balance of ice cliffs on debris-covered glaciers, Nepal Himalaya. Arct. Antarct. Alp. Res., 34(1), 1219.
Sakai, A., Yamada, T. and Fujita, K.. 2003. Volume change of Imja glacial lake in the Nepal Himalayas. In Proceedings of the International Symposium on Disaster Mitigation and Basin Wide Water Management 7–10 December 2003, Niigata, Japan. Nagaoka, Akatsuki Publishing Co., 556561.
Sakai, A. and 8 others. 2007. Topographical survey of end-moraine and dead ice area at the Imja Glacial Lake in 2001 and 2002. Bull. Glaciol. Res., 24, 2936.
Thórarinsson, S. 1939. The ice dammed lakes of Iceland with particular reference to their values as indicators of glacier oscillations. Geogr. Ann., 21(3–4), 216242.
Thórarinsson, S. 1957. The jökulhlaup from the Katla area in 1955 compared with other jökulhlaups in Iceland. Jökull, 7, 2125.
Warren, C.R. and Kirkbride, M.P.. 1998. Temperature and bathymetry of ice-contact lakes in Mount Cook National Park, New Zealand. New Zeal. J. Geol. Geophys., 41(2), 133143.
Warren, C.R. and Kirkbride, M.P.. 2003. Calving speed and climatic sensitivity of New Zealand lake-calving glaciers. Ann. Glaciol., 36, 173178.
Weeks, W.F. and Campbell, W.J.. 1973. Icebergs as a fresh-water source: an appraisal. J. Glaciol., 12(65), 207233.
Yamada, T. 1998. Glacier lake and its outburst flood in the Nepal Himalaya. Tokyo, Japanese Society of Snow and Ice. Data Center for Glacier Research.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 13
Total number of PDF views: 147 *
Loading metrics...

Abstract views

Total abstract views: 128 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 19th August 2018. This data will be updated every 24 hours.