Skip to main content

Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland

  • David Podrasky (a1), Martin Truffer (a1), Mark Fahnestock (a1) (a2), Jason M. Amundson (a1), Ryan Cassotto (a2) and Ian Joughin (a3)...

The loss of the floating ice tongue on Jakobshavn Isbrӕ, Greenland, in the early 2000s has been concurrent with a pattern of thinning, retreat and acceleration leading to enhanced contribution to global sea level. These changes on decadal timescales have been well documented. Here we identify how the glacier responds to forcings on shorter timescales, such as from variations in surface melt, the drainage of supraglacial lakes and seasonal fluctuations in terminus position. Ice motion and surface melt were monitored intermittently from 2006 to 2008. Dual-frequency GPS were deployed 20–50 km upstream of the terminus along the glacier center line. Gaps in surface melt measurements were filled using a temperature-index model of ablation driven by surface air temperatures recorded during the same time period. Our results corroborate the premise that the primary factors controlling speeds on Jakobshavn Isbrӕ are terminus position and geometry. We also observe that surface speeds demonstrate a complex relationship with meltwater input: on diurnal timescales, velocities closely match changes in water input; however, on seasonal timescales a longer, more intense melt season was observed to effectively reduce the overall ice flow of the glacier for the whole year

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland
      Available formats
Hide All
Amundson JM, Truffer M, Lüthi MP, Fahnestock M, West M and Motyka RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson JM, Fahnestock M, Truffer M, Brown J, Lüthi MP and Motyka RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Amundson JM, Clinton JF, Fahnestock M, Truffer M, Lüthi MP and Motyka RJ (2012) Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbrӕ, Greenland. Ann. Glaciol., 53(60 Pt 1), 7984 (doi: 10.3189/2012AoG60A200)
Andersen ML and 14 others (2010) Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. J. Geophys. Res., 115(F4), F04041 (doi: 10.1029/2010JF001760)
Bartholomaus TC, Anderson RS and Anderson SP (2008) Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337 (doi: 10.1038/ngeo.2007.52)
Bartholomew I, Nienow P, Mair D, Hubbard A, King MA and Sole A (2010) Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geosci., 3(6), 408411 (doi: 10.1038/ngeo863)
BØggild CE, Olesen OB, Ahlstrom AP and Jorgensen P (2004) Automatic glacier ablation measurements using pressure transducers. J. Glaciol., 50(169), 303304 (doi: 10.3189/172756504781830097)
Box JE (2005) Greenland ice sheet surface mass-balance variability: 1991–2003. Ann. Glaciol., 42, 9094 (doi: 10.3189/172756405781812772)
Cassotto RK (2011) Implications of changing winter fjord ice melanges for Greenland outlet glacier dynamics. (MS thesis, University of New Hampshire)
Colgan W and 7 others (2011) The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model. J. Glaciol., 57(204), 697709 (doi: 10.3189/002214311797409668)
Cuffey KM and Paterson WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Das SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Echelmeyer K and Harrison WD (1990) Jakobshavns Isbrӕ, West Greenland: seasonal variations in velocity – or lack thereof. J. Glaciol., 36(122), 8288
Fausto RS, Ahlstrom A, Van As D, Johnsen SJ, Langen PL and Steffen K (2009) Improving surface boundary conditions with focus on coupling snow densification and meltwater retention in large- scale ice-sheet models of Greenland. J. Glaciol., 55(193), 869878 (doi: 10.3189/002214309790152537)
Gabor D (1946) Theory of communication. J. Inst. Electr. Eng., 93(26), 429457
Hanna E and 8 others (2008) Increased runoff from melt from the Greenland Ice Sheet: a response to global warming. J. Climate, 21(2), 331341 (doi: 10.1175/2007JCLI1964.1)
Hock R (2003) Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115 (doi: 10.1016/S0022- 1694(03)00257–9)
Hoffman MJ, Catania GA, Neumann TA, Andrews LC and Rumrill JA (2011) Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res., 116(F4), F04035 (doi: 10.1029/2010JF001934)
Holland DM, Thomas RH, de Young B, Ribergaard MH and Lyberth B (2008) Acceleration of Jakobshavn Isbr* triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Iken A, Rothlisberger H, Flotron A and Haeberli W (1983) The uplift of Unteraargletscher at the beginning of the melt season – a consequence of water storage at the bed? J. Glaciol., 29(101), 2847
Joughin I, Abdalati W and Fahnestock MA (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbrӕ glacier. Nature, 432(7017), 608610 (doi: 10.1038/nature03130)
Joughin I and 7 others (2008a) Continued evolution of Jakobshavn Isbrӕ following its rapid speedup. J. Geophys. Res., 113(F4), F04006 (doi: 10.1029/2008JF001023)
Joughin I, Das SB, King MA, Smith BE, Howat IM and Moon T (2008b) Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783 (doi: 10.1126/science.1153288)
Joughin I and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbræ, Greenland: obser-vation and model-based analysis. J. Geophys. Res., 117(F2), F02030 (doi: 10.1029/2011JF002110)
Kamb B, Engelhardt H, Fahnestock MA, Humphrey N, Meier M and Stone D (1994) Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 2. Interpretation. J. Geophys. Res., 99(B8), 15 23115 244 (doi: 10.1029/94JB00467)
Krabill W and 12 others (2004) Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett., 31(24), L24402 (doi: 10.1029/2004GL021533)
Luckman A and Murray T (2005) Seasonal variation in velocity before retreat of Jacobshavn Isbræ, Greenland. Geophys. Res. Lett., 32(8), L08501 (doi: 10.1029/2005GL022519)
Meier MF and Post A (1987) Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058 (doi: 10.1029/JB092iB09p09051)
Meier M and 9 others (1994) Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1. Observations. J. Geophys. Res., 99(B8), 15 21915 229
Mernild SH, Liston GE, Steffen K and Chylek P (2010) Meltwater flux and runoff modeling in the ablation area of Jakobshavn Isbræ, West Greenland. J. Glaciol., 56(195), 2032 (doi: 10.3189/002214310791190794)
Moon T and Joughin I (2008) Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res., 113(F2), F02022 (doi: 10.1029/2007JF000927)
Mote TL (2007) Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys. Res. Lett., 34(22), L22507 (doi: 10.1029/2007GL031976)
Motyka RJ, Truffer M, Fahnestock M, Mortensen J, Rysgaard S and Howat I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007(doi: 10.1029/2009JF001632)
Nick FM, Vieli A, Howat IM and Joughin I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci., 2(2), 110114 (doi: 10.1038/ngeo394)
Nye JF (1953) The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc. R. Soc. London, Ser. A, 219(1139), 477489
Parizek BR and Alley RB (2004) Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations. Quat. Sci. Rev., 23(9–10), 10131027 (doi: 10.1016/j.quascirev.2003.12.024)
Pfeffer WT (2007) A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3), F03S25 (doi: 10.1029/2006JF000590)
Plummer J, Gogineni S, Van der Veen C, Leuschen C and Li J (2008) Ice thickness and bed map for Jakobshavn Isbræ. CReSIS Tech. Rep. 2008–1.
Podlech S and Weidick A (2004) Correspondence. A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J. Glaciol., 50(168), 153154 (doi: 10.3189/172756504781830231)
Podrasky DB, Truffer M, Fahnestock MA and Luthi MP (2010) Short period velocity response to tides and calving near the terminus of Jakobshavn Isbræ [Abstr. C23C-0636]. Am. Geophys. Union, Fall Meet (
Rignot E and Kanagaratnam P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rӧthlisberger H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203
Schoof C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Schoof C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)
Sohn HG, Jezek KC and Van der Veen CJ (1998) Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. Geophys. Res. Lett., 25(14), 26992702 (doi: 10.1029/98GL01973)
Sole AJ and 6 others (2011) Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt- induced changes in subglacial hydrology. J. Geophys. Res., 116(F3), F03014 (doi: 10.1029/2010JF001948)
Sundal AV, Shepherd A, Nienow P, Hanna E, Palmer S and Huybrechts P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521524 (doi: 10.1038/nature09740)
Thomas R, Frederick E, Krabill W, Manizade S and Martin C (2009) Recent changes on Greenland outlet glaciers. J. Glaciol., 55(189), 147162 (doi: 10.3189/002214309788608958)
Truffer M, Harrison WD and March RS (2005) Correspondence. Record negative glacier balances and low velocities during the 2004 heatwave in Alaska, USA: implicationsfor the interpretation of observations by Zwally and others in Greenland. J. Glaciol., 51(175), 663664 (doi: 10.3189/172756505781829016)
Van de Wal RSW and 6 others (2008) Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111113 (doi: 10.1126/science.1158540)
Van den Broeke M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Vieli A, Funk M and Blatter H (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J. Glaciol., 47(159), 595606 (doi: 10.3189/172756501781831747)
Zwally HJ, Abdalati W, Herring T, Larson K, Saba J and Steffen K (2002) Surface melt-induced acceleration of Greenland ice- sheet flow. Science, 297(5579), 218222 (doi: 10.1126/science.1072708)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 19 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 22nd January 2018. This data will be updated every 24 hours.