Skip to main content
×
Home

Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard

  • Thorben Dunse (a1), Ralf Greve (a2), Thomas Vikhamar Schuler (a1) and Jon Ove Hagen (a1)
Abstract
Abstract

A large part of the ice flux within ice caps occurs through spatially limited fast-flowing units. Some of them permanently maintain fast flow, whereas others operate in an oscillatory mode, characterized by short-lived active phases followed by long quiescent phases. This surge-type behaviour results from intrinsic rather than external factors, thus complicating estimates of glacier response to climate change. Here we present numerical model results from Austfonna, an ice cap on Svalbard that comprises several surge-type basins. Previous studies have suggested a thermally controlled soft-bed surge mechanism for Svalbard. We systematically change the parameters that govern the nature of basal motion and thereby control the transition between permanent and oscillatory fast flow. Surge-type behaviour is realized by a relatively abrupt onset of basal sliding when basal temperatures approach the pressure-melting point and enhanced sliding of marine grounded ice. Irrespective of the dynamic regime, the absence of considerable volumes of temperate ice, both in the observed and simulated ice cap, indicates that fast flow is accomplished by basal motion over a temperate bed. Given an idealized present-day climate, the equilibrium ice-cap size varies significantly, depending on the chosen parameters.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Permanent fast flow versus cyclic surge behaviour: numerical simulations of the Austfonna ice cap, Svalbard
      Available formats
      ×
Copyright
References
Hide All
Albrecht T., Martin M., Haseloff M., Winkelmann R. and Levermann A.. 2010. Parameterization for subgrid-scale motion of ice-shelf calving-fronts. Cryosphere, 4(3), 14971523.
Bamber J., Krabill W., Raper V. and Dowdeswell J.. 2004. Anomalous recent growth of part of a large Arctic ice cap: Austfonna, Svalbard. Geophys. Res. Lett., 31(12), L12402. (10.1029/2004GL019667.)
Benn D.I., Hulton N.R.J. and Mottram R.H.. 2007. ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46, 123130.
Bevan S., Luckman A., Murray T., Sykes H. and Kohler J.. 2007. Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry. Ann. Glaciol., 46, 117122.
Björnsson H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 2332.
Blake W. 2006. Occurrence of the Mytilus edulis complex on Nordaustlandet, Svalbard: radiocarbon ages and climatic implications. Polar Res., 25(2), 123137.
Bueler E. and Brown J.. 2009. Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res., 114(F3), F03008. (10.1029/2008JF001179.)
Bueler E., Brown J. and Lingle C.. 2007. Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification. J. Glaciol., 53(182), 499516.
Calov R., Ganopolski A., Petoukhov V., Claussen M. and Greve R.. 2002. Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model. Geophys. Res. Lett., 29(24), 2216. (10.1029/2002GL016078.)
Calov R. and 10 others. 2010. Results from the Ice-Sheet Model Intercomparison Project–Heinrich Event INtercOmparison (ISMIP HEINO). J. Glaciol., 56(197), 371383.
Clarke G.K.C. 1976. Thermal regulation of glacier surging. J. Glaciol., 16(74), 231250.
Clarke G.K.C. 1987. Fast glacier flow: ice streams, surging and tidewater glaciers. J. Geophys. Res., 92(B9), 88358841.
Clarke G.K.C., Collins S.G. and Thompson D.E.. 1984. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci., 21(2), 232240.
Dolgoushin L.D. and Osipova G.B.. 1975. Glacier surges and the problem of their forecasting. IAHS Publ. 104 (Symposium at Moscow 1971 –Snow and Ice), 292304.
Dowdeswell J.A. 1986. Drainage-basin characteristics of Nordaustlandet ice caps, Svalbard. J. Glaciol., 32(110), 3138.
Dowdeswell J.A., Drewry D.J., Cooper A.P.R., Gorman M.R., Liestøl O. and Orheim O.. 1986. Digital mapping of the Nordaustlandet ice caps from airborne geophysical investigations. Ann. Glaciol., 8, 5158.
Dowdeswell J.A., Hamilton G.S. and Hagen J.O.. 1991. The duration of the active phase on surge-type glaciers: contrasts between Svalbard and other regions. J. Glaciol., 37(127), 388400.
Dowdeswell J.A., Unwin B., Nuttall A.-M. and Wingham D.J.. 1999. Velocity structure, flow instability and mass flux on a large Arctic ice cap from satellite radar interferometry. Earth Planet. Sci. Lett., 167(3-4), 131140.
Dowdeswell J.A., Benham T.J., Strozzi T. and Hagen J.O.. 2008. Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J. Geophys. Res., 113(F3), F03022. (10.1029/2007JF000905.)
Dunse T., Schuler T.V., Hagen J.O., Eiken T., Brandt O. and Høgda K.A.. 2009. Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR. Ann. Glaciol., 50, 155162.
Fowler A.C., Murray T. and Ng F.S.L.. 2001. Thermally controlled glacier surging. J. Glaciol., 47(159), 527538.
Glasser N.F. and Hambrey M.J.. 2001. Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. J. Geol. Soc. [London], 158(4), 697707.
Greve R. 1997. A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. London, Ser. A, 355(1726), 921974.
Greve R. 2005. Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol., 42, 424432.
Greve R. and Blatter H.. 2009. Dynamics of ice sheets and glaciers. Berlin, etc., Springer.
Greve R., Weis M. and Hutter K.. 1998. Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of Summit: an approach by large-scale modelling. Palaeoclimates, 2(2–3), 133161.
Greve R., Takahama R. and Calov R.. 2006. Simulation of large-scale ice-sheet surges: the ISMIP HEINO experiments. Polar Meteorol. Glaciol. 20, 115.
Hagen J.O., Liestøl O., Roland E. and Jørgensen T.. 1993. Glacier atlas of Svalbard and Jan Mayen. Nor. Polarinst. Medd. 129.
Hagen J.O., Eiken T., Kohler J. and Melvold K.. 2005. Geometry changes on Svalbard glaciers: mass-balance or dynamic response? Ann. Glaciol., 42, 255261.
Hamilton G.S. and Dowdeswell J.A.. 1996. Controls on glacier surging in Svalbard. J. Glaciol., 42(140), 157168.
Hindmarsh R. 1997. Deforming beds: viscous and plastic scales of deformation. Quat. Sci. Rev., 16(9), 10391056.
Hindmarsh R.C.A. and Le Meur E.. 2001. Dynamical processes involved in the retreat of marine ice sheets. J. Glaciol., 47(157), 271282.
Hjort C., Mangerud J., Adrielsson L., Bondevik S., Landvik J.Y. and Salvigsen O.. 1995. Radiocarbon dated common mussels Mytilus edulis from eastern Svalbard and the Holocene marine climatic optimum. Polar Res., 14(2), 239243.
Hutter K. 1983. Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. Dordrecht, etc., D. Reidel Publishing Co./Tokyo, Terra Scientific Publishing Co.
Ignatieva I.Y. and Macheret Yu.Ya.. 1991. Evolution of Nordaustlandet ice caps in Svalbard under climate warming. IAHS Publ. 208 (Symposium at St. Petersburg 1990 – Glaciers–Ocean– Atmosphere Interactions), 301312.
Jakobsson M. and 7 others. 2008. An improved bathymetric portrayal of the Arctic Ocean: implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35(7), L07602. (10.1029/2008GL033520.)
Jiskoot H., Murray T. and Boyle P.. 2000. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol., 46(154), 412422.
Kamb B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100.
Kamb B. and 7 others. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479.
Kotlyakov V.M. and Macheret Y.. 1987. Radio echo-sounding of sub-polar glaciers in Svalbard: some problems and results of Soviet studies. Ann. Glaciol., 9, 151159.
Lauritzen Ö. and Ohta Y.. 1984. Geological map of Svalbard 1:500,000. Sheet 4G, Nordaustlandet. Nor. Polarinst. Skr. 154D.
MacAyeal D.R. 1993. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography, 8(6), 775784.
Macheret Yu.Ya. and Vasilenko E.V.. 1988. [Pecularities of internal structure and regime of glaciers on Nordaustlandet by airborne radio-echo sounding data]. Mater. Glyatsiol. Issled./Data Glaciol. Stud. 62, 4456. [In Russian with English summary.]
Macheret Y., Bobrova L.I. and Sankina L.V.. 1991. Ob’yemnoye gidrotermicheskoye sostoyaniye i rezhim lednikov Shpitsbergena po dannym aeroradiozondirovaniya [Volumetric hydrothermal state and regime of the Spitsbergen glaciers from airborne radio echo-sounding data]. Mater. Glyatsiol. Issled./Data Glaciol. Stud., 71, 4053. [In Russian with English summary.]
Marshall S.J., Tarasov L., Clarke G.K.C. and Peltier W.R.. 2000. Glaciological reconstruction of the Laurentide ice sheet: physical processes and modelling changes. Can. J. Earth Sci., 37(5), 769793.
Meier M.F. and Post A.. 1969. What are glacier surges? Can. J. Earth Sci., 6(4), 807817.
Moholdt G., Hagen J.O., Eiken T. and Schuler T.V.. 2010. Geometric changes and mass balance of the Austfonna ice cap, Svalbard. Cryosphere, 4(1), 2134.
Morland L.W. 1984. Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dyn., 29(1–4), 237266.
Murray T. and 6 others. 2000. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res., 105(B6), 13,49113,507.
Payne A.J. 1995. Limit cycles in the basal thermal regime of ice sheets. J. Geophys. Res., 100(B3), 42494263.
Payne A.J. and 10 others. 2000. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 46(153), 227238.
Pfeffer W.T. 2007. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3), F03S25. (10.1029/2006JF000590.)
Pinglot J.F., Hagen J.O., Melvold K., Eiken T. and Vincent C.. 2001. A mean net accumulation pattern derived from radioactive layers and radar soundings on Austfonna, Nordaustlandet, Svalbard. J. Glaciol., 47(159), 555566.
Raymond C.F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92(B9), 91219134.
Ritz C. 1987. Time dependent boundary conditions for calculation of temperature fields in ice sheets. IAHS Publ. 170 (Symposium at Vancouver 1987 – The Physical Basis of Ice Sheet Modelling), 207216.
Schuler T.V., Loe E., Taurisano A., Eiken T., Hagen J.O. and Kohler J.. 2007. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard. Ann. Glaciol., 46, 241248.
Schuler T.V., Crochet P., Hock R., Jackson M., Barstad I. and Johannesson T.. 2008. Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrol. Process., 22(19), 39984008.
Schytt V. 1969. Some comments on glacier surges in eastern Svalbard. Can. J. Earth Sci., 6(4), 867873.
Shreve R.L. 1984. Glacier sliding at subfreezing temperatures. J. Glaciol., 30(106), 341347.
Smith R.B. and Barstad I.. 2004. A linear theory of orographic precipitation. J. Atmos. Sci., 61(12), 13771391.
Solheim A. 1986. Submarine evidence of glacier surges. Polar Res., 4(1), 9195.
Solheim A. 1991. The depositional environment of surging subpolar tidewater glaciers: a case study of the morphology, sedimentation and sediment properties in a surge-affected marine basin outside Nordaustlandet, northern Barents Sea. Nor. Polarinst. Skr., 194.
Solheim A. and Pfirman S.L.. 1985. Sea-floor morphology outside a grounded, surging glacier: Bråsvellbreen, Svalbard. Mar. Geol., 65(1–2), 127143.
Sund M., Eiken T., Hagen J.O. and Kääb A.. 2009. Svalbard surge dynamics derived from geometric changes. Ann. Glaciol., 50(52), 5060.
Tarasov L. and Peltier W.R.. 1997. A high-resolution model of the 100 ka ice-age cycle. Ann. Glaciol., 25, 5865.
Taurisano A. and 6 others. 2007. The distribution of snow accumulation across Austfonna ice cap, Svalbard: direct measurements and modelling. Polar Res., 26(1), 713.
Tulaczyk S.M., Kamb B. and Engelhardt H.F.. 2000. Basal mechanics of Ice Stream B, West Antarctica. II. Undrainedplastic-bed model. J. Geophys. Res., 105(B1), 483494.
Vasilenko E., Navarro F., Dunse T., Eiken H. and Hagen J.O.. 2010. New low-frequency radio-echo soundings of Austfonna ice cap, Svalbard. Dan. Grønl. Geol. Unders. Rapp. 127.
Yde J.C. and Paasche Ø.. 2010. Reconstructing climate change: not all glaciers suitable. Eos, 91(21), 189190.
Zagorodnov V.A., Sin’kevich S.A. and Arkhipov S.M.. 1989a. Gidrotermicheskiy rezhim ledorazdel ‘noy oblasti Vostochnogo ledyanogo polya o. Severo-Vostochnaya Zemlya [Hydrothermal regime of the ice-divide area of Austfonna, Nordaustlandet]. Mater. Glyatsiol. Issled./Data Glaciol. Stud., 68, 133141. [In Russian with English summary.]
Zagorodnov V.A., Sin’kevich S.A. and Arkhipov S.M.. 1989b. Ice core express-analysis for structure and thermal regime studies of Austfonna. Mater. Glyatsiol. Issled./Data Glaciol. Stud., 66, 149158. [In Russian with English summary.]
Zweck C. and Huybrechts P.. 2005. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res., 110(D7), D07103. (10.1029/2004JD005489.)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 43 *
Loading metrics...

Abstract views

Total abstract views: 17 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 13th December 2017. This data will be updated every 24 hours.