Skip to main content
×
×
Home

Physical properties of the WAIS Divide ice core

  • Joan J. Fitzpatrick (a1), Donald E. Voigt (a2), John M. Fegyveresi (a2), Nathan T. Stevens (a2), Matthew K. Spencer (a3), Jihong Cole-Dai (a4), Richard B. Alley (a2), Gabriella E. Jardine (a5), Eric D. Cravens (a6), Lawrence A. Wilen (a7), T.J. Fudge (a8) and Joseph R. Mcconnell (a9)...
Abstract
Abstract

The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending 50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Physical properties of the WAIS Divide ice core
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Physical properties of the WAIS Divide ice core
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Physical properties of the WAIS Divide ice core
      Available formats
      ×
Copyright
References
Hide All
Alley RB (1988) Fabrics in polar ice sheets: development and prediction. Science, 240(4851), 493495 (doi: 10.1126/science.240.4851.493)
Alley RB (1992) Flow-law hypotheses for ice-sheet modeling. J. Glaciol., 38(129), 245256
Alley RB and Fitzpatrick JJ (1999) Conditions for bubble elongation in cold ice-sheet ice. J. Glaciol., 45(149), 147153
Alley RB and Woods GA (1996) Impurity influence on normal grain growth in the GISP2 ice core, Greenland. J. Glaciol., 42(141), 255260
Alley RB, Perepezko JH and Bentley CR (1986a) Grain growth in polar ice: II. Application. J. Glaciol., 32(112), 425433
Alley RB, Perepezko JH and Bentley CR (1986b) Grain growth in polar ice: I. Theory. J. Glaciol., 32(112), 415424
Alley RB, Gow AJ and Meese DA (1995) Mapping c –axis fabrics to study physical processes in ice. J. Glaciol., 41(137), 197203
Alley RB and 11 others (1997) Visual-stratigraphic dating of the GISP2 ice core: basis, reproducibility, and application. J. Geophys. Res., 102(C12), 26 367–26 382 (doi: 10.1029/96JC03837)
Ashby MF, Harper J and Lewis J (1969) The interaction of crystal boundaries with second-phase particles. Trans. Metall. Soc. AIME, 245(3), 413420
Azuma N and 6 others (2000) Crystallographic analysis of the Dome Fuji ice core. In Hondoh T ed. Physics of ice core records, Hokkaido University Press, Sapporo, 4561
Bansal PP and Ardell AJ (1972) Average nearest-neighbor distances between uniformly distributed finite particles. Metallography, 5(2), 97111 (doi: 10.1016/0026–0800(72)90048–1)
Battle MO and 8 others (2011) Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmos. Chem. Phys., 11(21), 11 00711 021 (doi: 10.5194/acp-11–11007–2011)
Bender ML, Burgess E, Alley RB, Barnett B and Clow GD (2011) On the nature of the dirty ice at the bottom of the GISP2 ice core. Earth Planet. Sci. Lett., 299(3–4), 466473 (doi: 10.1016/j.epsl. 2010.09.033)
Binder T, Weikusat I, Freitag J, Garbe CS, Wagenbach D and Kipfstuhl S (2013) Microstructure through an ice sheet. In Barnett M ed. Recrystallization and grain growth V. (Materials Science Forum 753) Trans Tech Publications, Pfaffikon, 481484
Blenkinsop TG (2000) Deformation microstructures and mechanisms in minerals and rocks. Kluwer Academic, Dordrecht Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London
Budd WF and Jacka TH (1989) A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144 (doi: 10.1016/0165–232X(89)90014–1)
Cahn JW (1962) The impurity-drag effect in grain boundary motion. Acta Metall., 10(9), 789798 (doi: 10.1016/0001–6160(62) 90092–5)
Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc., 74(368), 829836 (doi: 10.1080/01621459.1979.10481038)
Cleveland WS and Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc., 83(403), 596610 (doi: 10.1080/01621459.1988.10478639)
Coble RL (1970) Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys., 41(12), 47984807 (doi: 10.1063/1.1658543)
Conway H and Rasmussen LA (2009) Recent thinning and migration of the Western Divide, central West Antarctica. Geophys. Res. Lett., 36(12), L12502 (doi: 10.1029/2009GL038072)
Cuffey KM and Paterson WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Cuffey KM, Thorsteinsson T and Waddington ED (2000) A renewed argument for crystal size control of ice sheet strain rates. J. Geophys. Res., 105(B12), 27 889–27 894 (doi: 10.1029/2000JB900270)
Dahl-Jensen D, Gundestrup N, Gogineni SP and Miller H (2003) Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol., 37, 207212 (doi: 10.3189/172756403781815492)
Das SB and Alley RB (2005) Characterization and formation of melt layers in polar snow: observations and experiments from West Antarctica. J. Glaciol., 51(173): 307313 (doi: 10.3189/172756505781829395)
DiPrinzio CL, Wilen LA, Alley RB, Fitzpatrick JJ, Spencer MK and Gow AJ (2005) Fabric and texture at Siple Dome, Antarctica. J. Glaciol., 51(173), 281290 (doi: 10.3189/172756505781829359)
Durand G (2004) Microstructure, recristallisation et déformation des glaces polaires de la carotte EPICA, Dôme Concordia, Antarctique. (PhD thesis, Université Joseph Fourier)
Durand G and 10 others (2006) Effect of impurities on grain growth in cold ice sheets. J. Geophys. Res., 111(F1), F01015 (doi: 10.1029/2005JF000320)
Duval P and Lorius C (1980) Crystal size and climatic record down to the last ice age from Antarctic ice. Earth Planet. Sci. Lett., 48(1), 5964 (doi: 10.1016/0012–821X(80)90170–3)
Faria SH, Freitag J and Kipfstuhl S (2010) Polar ice structure and the integrity of ice-core paleoclimate records. Quat. Sci. Rev., 29(1–2), 338351 (doi: 10.1016/j.quascirev.2009.10.016)
Fegyveresi JM and 7 others (2011) Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates. J. Glaciol., 57(204), 629638 (doi: 10.3189/002214311797409677)
Ferrick MG and Claffey KJ (1993) Vector analysis of ice-fabric data. J. Glaciol., 39(132), 292302
Fischer H, Siggaard-Andersen M-L, Ruth U, Röthlisberger R and Wolff E (2007) Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys., 45(RG10), RG1002 (doi: 10.1029/2005RG000192)
Fitzpatrick JJ (2013) Digital-image processing and image analysis of glacier ice. In Automated data processing and computations. (USGS Techniques and Methods 7) US Geological Survey, Reston, VA http://dx.doi.org/10.3133/tm7D1
Freitag J, Kipfstuhl S, Laepple T and Wilhelms F (2013) Impurity-controlled densification: a new model for stratified polar firn. J. Glaciol., 59(218), 11631169 (doi: 10.3189/2013JoG13J042)
Gow AJ (1969) On the rates of growth of grains and crystals in South Polar firn. J. Glaciol., 8(53), 241252
Gow AJ (1970) Deep core studies of the crystal structure and fabrics of Antarctic glacier ice. CRREL Res. Rep. 282
Gow AJ and Meese D (2007) Physical properties, crystalline textures and c –axis fabrics of the Siple Dome (Antarctica) ice core. J. Glaciol., 53(183), 573584 (doi: 10.3189/002214307784409252)
Gow AJ and Williamson T (1976) Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. CRREL Rep. 76, 16651677
Gow AJ, Epstein S and Sheehy W (1979) On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23(89), 185192
Gow AJ and 6 others (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: a review. J. Geophys. Res., 102(C12), 26 559–26 575 (doi: 10.1029/97JC00165)
Hammer CU (1983) Initial direct current in the buildup of space charges and the acidity of ice cores. J. Phys. Chem., 87(21), 40994103 (doi: 10.1021/j100244a022)
Hammer CU, Clausen HB, Dansgaard W, Neftel A, Kristinsdóttir P and Johnson E (1985) Continuous impurity analysis along the Dye 3 deep core. In Greenland ice core: geophysics, geochemistry, and the environment. (Geophysical Monograph 33) American Geophysical Union, Washington, DC, 9094
Hansen DP and Wilen LA (2002) Performance and applications of an automated c –axis ice-fabric analyzer. J. Glaciol., 48(160), 159170 (doi: 10.3189/172756502781831566)
Herron SL, Langway CC Jr and Brugger KA (1985) Ultrasonic velocities and crystalline anisotropy in the ice core from Dye 3, Greenland. In Greenland ice core: geophysics, geochemistry, and the environment. (Geophysical Monograph 33) American Geophysical Union, Washington, DC, 2331
Hsueh CH and Evans AG (1983) Microstructure evolution during sintering: the role of evaporation/condensation. Acta Metall., 31(1), 189198 (doi: 10.1016/0001–6160(83)90078–0)
Jouzel J and 31 others (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793796 (doi: 10.1126/science.1141038)
Kennedy JH, Pettit EC and Di Prinzio CL (2013) The evolution of crystal fabric in ice sheets and its link to climate history. J. Glaciol., 59(214), 357373 (doi: 10.3189/2013JoG12J159)
Kipfstuhl S and 8 others (2009) Evidence of dynamic recrystallization in polar firn. J. Geophys. Res., 114(B5), B05204 (doi: 10.1029/2008JB005583)
Kittler J, Illingworth J and Föglein J (1985) Threshold selection based on a simple image statistic. Comput. Vision Graph. Image Process., 30(2), 125147 (doi: 10.1016/0734–189X(85)90093–3)
Kruhl JH (1996) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J. Metamorph. Geol., 14(5), 581589 (doi: 10.1046/j.1525–1314.1996.00413.x)
Langway CC Jr (1967) Stratigraphic analysis of a deep ice core from Greenland. CRREL Res. Rep. 77
Langway CC Jr, Shoji H and Azuma N (1988) Crystal size and orientation patterns in the Wisconsin-age ice from Dye 3, Greenland. Ann. Glaciol., 10, 109115
Lipenkov VYa, Barkov NI, Duval P and Pimienta P (1989) Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35(121), 392398
Lücke K and Detert K (1957) A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities. Acta Metall., 5(11), 628637 (doi: 10.1016/0001–6160(57)90109–8)
Mayewski PA and 13 others (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41000 years. Science, 263(5154), 17471751 (doi: 10.1126/science.263.5154.1747)
McGwire KC, McConnell JR, Alley RB, Banta JR, Hargreaves GM and Taylor KC (2008) Dating annual layers of a shallow Antarctic ice core with an optical scanner. J. Glaciol., 54(188), 831838 (doi: 10.3189/002214308787780021)
Moore JC (1993) High-resolution dielectric profiling of ice cores. J. Glaciol., 39(132), 245248
Morse DL, Blankenship DD, Waddington ED and Neumann TA (2002) A site for deep ice coring in West Antarctica: results from aerogeophysical surveys and thermo-kinematic modeling. Ann. Glaciol., 35, 3644 (doi: 10.3189/172756402781816636)
Okudaira T, Takeshita T and Toriumi M (1998) Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. J. Metamorph. Geol., 16(1), 141146 (doi: 10.1111/j.1525–1314.1998.00063.x)
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans. Syst. Manage. Cybern., 9(1), 6266 (doi: 10.1109/TSMC.1979.4310076)
Parker JR (1996) Algorithms for image processing and computer vision. Wiley, New York
Passchier CW and Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin
Pauer F, Kipfstuhl J, Kuhs WF and Shoji H (1999) Air clathrate crystals from the GRIP deep ice core: a number-, size- and shape-distribution study. J. Glaciol., 45(149), 2230
Pun T (1980) A new method for grey-level picture thresholding using the entropy of the histogram. Signal Process., 2(3), 223237 (doi: 10.1016/0165–1684(80)90020–1)
Russ JC (2011) The image processing handbook, 6th edn. CRC Press, Boca Raton, FL
Russell-Head DS and Wilson CJL (2001) Automated fabric analyser system for quartz and ice. Geol. Soc. Austral. Abstr., 64, 159
Shoji H and Langway CC Jr (1982) Air hydrate inclusions in fresh ice core. Nature, 298(5874), 548550 (doi: 10.1038/298548a0)
Souney JM and 15 others (2014) Core handling and processing for the WAIS Divide ice-core project. Ann. Glaciol., 55(68), 1526 (doi: 10.3189/2014AoG68A008)
Spaulding NE, Meese DA and Baker I (2011) Advanced micro-structural characterization of four East Antarctic firn/ice cores. J. Glaciol., 57(205), 796810 (doi: 10.3189/002214311798043807)
Spencer MK, Alley RB and Fitzpatrick JJ (2006) Developing a bubble number-density paleoclimatic indicator for glacier ice. J. Glaciol., 52(178), 358364 (doi: 10.3189/172756506781828638)
Svensson A and 7 others (2005) Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. J. Geophys. Res., 110(D2), D02108 (doi: 10.1029/2004JD005134)
Taylor KC and Alley RB (2004) Two-dimensional electrical statigraphy of the Siple Dome (Antarctica) ice core. J. Glaciol., 50(169), 231235 (doi: 10.3189/172756504781830033)
Taylor KC and 9 others (1993) Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455), 549552 (doi: 10.1038/366549a0)
Taylor KC and 13 others (2004) Dating the Siple Dome (Antarctica) ice core by manual and computer interpretation of annual layering. J. Glaciol., 50(170), 453461 (doi: 10.3189/172756504781829864)
Thorsteinsson T, Kipfstuhl J and Miller H (1997) Textures and fabrics in the GRIP ice core. J. Geophys. Res., 102(C12), 26 583–26 599 (doi: 10.1029/97JC00161)
Tison J-L, Thorsteinsson T, Lorrain RD and Kipfstuhl J (1994) Origin and development of textures and fabrics in basal ice at Summit, Central Greenland. Earth Planet. Sci. Lett., 125(3–4), 421437 (doi: 10.1016/0012–821X(94)90230–5)
Uchida T, Hondoh T, Mae S, Lipenkov VY and Duval P (1994) Airhydrate crystals in deep ice-core samples from Vostok Station, Antarctica. J. Glaciol., 40(134), 7986
Underwood EE (1970) Quantitative stereology. Addison-Wesley, Reading, MA
Van der Veen CJ and Whillans IM (1994) Development of fabric in ice. Cold Reg. Sci. Technol., 22(2), 171195 (doi: 10.1016/0165–232X(94)90027–2)
Waddington ED, Bolzan JF and Alley RB (2001) Potential for stratigraphic folding near ice-sheet centers. J. Glaciol., 47(159), 639648 (doi: 10.3189/172756501781831756)
WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500(7463), 440444 (doi: 10.1038/nature12376)
Weertman J (1968) Bubble coalescence in ice as a tool for the study of its deformation. J. Glaciol., 7(50), 155159
Weikusat I, Kipfstuhl S, Faria SH, Azuma N and Miyamoto A (2009) Subgrain boundaries and related microstructural features in EDML (Antarctica) deep ice core. J. Glaciol., 55(191), 461472 (doi: 10.3189/002214309788816614)
Weikusat I, Miyamoto A, Faria SH, Kipfstuhl S, Azuma N and Hondoh T (2011) Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. Glaciol., 57(201), 111120 (doi: 10.3189/002214311795306628)
Weiss J, Vidot J, Gray M, Arnaud L, Duval P and Petit JR (2002) Dome Concordia ice microstructure: impurities effect on grain growth. Ann. Glaciol., 35, 552558 (doi: 10.3189/172756402781816573)
Wilen LA (2000) A new technique for ice-fabric analysis. J. Glaciol., 46(152), 129139 (doi: 10.3189/172756500781833205)
Wilen LA, DiPrinzio CL, Alley RB and Azuma N (2003) Development, principles, and applications of automated ice fabric analyzers. Microsc. Res. Tech., 62(1), 218 (doi: 10.1002/jemt.10380)
Wolff EW and 29 others (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat. Sci. Rev., 29(1–2), 285295 (doi: 10.1016/j. quascirev.2009.06.013)
Woodcock NH (1977) Specification of fabric shapes using an eigenvalue method. Geol. Soc. Am. Bull., 88(9), 12311236 (doi: 10.1130/0016–7606(1977)88<1231:SOFSUA>2.0.CO;2)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 30 *
Loading metrics...

Abstract views

Total abstract views: 80 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 19th February 2018. This data will be updated every 24 hours.