Skip to main content
×
×
Home

Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking

  • D.J. Quincey (a1), A. Luckman (a2) and D. Benn (a3)
Abstract

Many glacier snouts in the Himalaya are known to be stagnant and exhibiting low surface gradients, conditions that are conducive to the formation of glacial lakes impounded either by the terminal moraine or by the remnant glacier snout. In this study, we use interferometry and feature-tracking techniques to quantify the extent of stagnation in 20 glaciers across the Everest (Qomolangma; Sagarmatha) region, and subsequently we examine the relationship between local catchment topography and ice dynamics. The results show that only one of the studied glaciers, Kangshung Glacier, is dynamic across its entire surface, with flow rates greater than 40 m a−1 being recorded in high-elevation areas. Twelve other glaciers show some evidence of flow, but are generally characterized by long, stagnant tongues, indicating widespread recession and in situ decay. The remaining seven glaciers show no evidence of flow in any of the available datasets. Hypsometric data suggest that catchment topography plays an important role in controlling glacier flow regimes, with those fed by wide, high-altitude accumulation areas showing the most extensive active ice, and those originating at low elevations exhibiting large areas of stagnant ice. Surface profiles extracted from a SRTM digital elevation model indicate that stagnant snouts are characterized by very low (<2°) surface angles and that down-wasting is the prevalent ablation pattern in the study area.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quantification of Everest region glacier velocities between 1992 and 2002, using satellite radar interferometry and feature tracking
      Available formats
      ×
Copyright
References
Hide All
Ageta, Y. and Higuchi, K.. 1984. Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya. Geogr. Ann., 66A(3), 249255.
Benn, D.I. and Lehmkuhl, F.. 2000. Mass balance and equilibrium-line altitudes of glaciers in high mountain environments. Quat. Int., 65/66, 1529.
Benn, D.I., Wiseman, S. and Hands, K.A.. 2001. Growth and drainage of supraglacial lakes on the debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal. J. Glaciol., 47(159), 626638.
Bolch, T., Buchroithner, M.F., Peters, J., Baessler, M. and Bajracharya, S.. 2008a. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natur. Hazards Earth Syst. Sci. (NHESS), 8(6), 13291340.
Bolch, T., Buchroithner, M., Pieczonka, T. and Kunert, A.. 2008b. Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol., 54(187), 592600.
Gabriel, A.K., Goldstein, R.M. and Zebker, H.A.. 1989. Mapping small elevation changes over large areas: differential radar interferometry. J. Geophys. Res., 94(B7), 91839191.
Gulley, J. and Benn, D.I.. 2007. Structural control of englacial drainage systems in Himalayan debris-covered glaciers. J. Glaciol., 53(182), 399412.
Joughin, I., Kwok, R. and Fahnestock, M.. 1996. Estimation of ice-sheet motion using satellite radar interferometry, J. Glaciol., 42(142), 564575.
Kääb, A. 2005. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya. Remote Sens. Environ., 94(4), 463474.
Kadota, T., Seko, K., Aoki, T., Iwata, S. and Yamaguchi, S.. 2000. Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 235243.
Lucchitta, B.K., Rosanova, C.E. and Mullins, K.F.. 1995. Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images. Ann. Glaciol., 21, 277283.
Luckman, A., Quincey, D.J. and Bevan, S.. 2007. The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers. Remote Sens. Environ., 111(2–3), 172181.
Mohr, J.J., Reeh, N. and Madsen, S.N.. 2003. Accuracy of three-dimensional glacier surface velocities derived from radar interferometry and ice-sounding radar measurements. J. Glaciol., 49(165), 210222.
Nakawo, M., Yabuki, H. and Sakai, A.. 1999. Characteristics of Khumbu Glacier, Nepal Himalaya: recent changes in the debris-covered area. Ann. Glaciol., 28, 118122.
Nicholson, L. and Benn, D.I.. 2006. Calculating ice melt beneath a debris layer using meteorological data. J. Glaciol., 52(178), 463470.
Oerlemans, J. 1994. Quantifying global warming from the retreat of glaciers. Science, 264(5156), 243245.
Qin, D. and 9 others. 2000. Evidence for recent climate change from ice cores in the central Himalaya. Ann. Glaciol., 31, 153158.
Quincey, D.J. and 6 others. 2007. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global Planet. Change, 56(1–2), 137152.
Reynolds, J.M. 1999. Glacial hazard assessment at Tsho Rolpa,Rolwaling, central Nepal. Q. J. Eng. Geol., 32(3), 209214.
Reynolds, J.M. 2000. On the formation of supraglacial lakes on debris-covered glaciers. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 153161.
Richardson, S.D. and Reynolds, J.M.. 2000. An overview of glacial hazards in the Himalayas. Quat. Int., 65/66, 3147.
Sakai, A., Nakawo, M. and Fujita, K.. 1998. Melt rate of ice cliffs on the Lirung Glacier, Nepal Himalayas, 1996. Bull. Glacier Res. 16, 5766.
Sakai, A., Takeuchi, N., Fujita, K. and Nakawo, M.. 2000. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 119130.
Scharroo, R. and Visser, P.. 1998. Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res., 103(C4), 81138127.
Scherler, D., Leprince, S. and Strecker, M.R.. 2008. Glacier-surface velocities in alpine terrain from optical satellite imagery – accuracy improvement and quality assessment. Remote Sens. Environ., 112(10), 38063819.
Shrestha, A.B., Wake, C.P., Mayewski, P.A. and Dibb, J.E.. 1999. Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–1994. J. Climate, 12(9), 27752786.
Solomon, S. and 7 others, eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press.
Strozzi, T., Luckman, A., Murray, T., Wegmuller, U. and Werner, C.L.. 2002. Glacier motion estimation using satellite-radar offset-tracking procedures. IEEE Trans. Geosci. Remote Sens., 40(11), 2834–2391.
Watanabe, T., Kameyama, S. and Sato, T.. 1995. Imja Glacier dead-ice melt rates and changes in a supra-glacial lake, 1989–1994, Khumbu Himal, Nepal: danger of lake drainage. Mt. Res. Dev., 15(4), 292300.
Wessels, R.L., Kargel, J.S. and Kieffer, H.H.. 2002. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Ann. Glaciol., 34, 399408.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 12
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 157 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 22nd September 2018. This data will be updated every 24 hours.