Skip to main content Accessibility help

Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland

  • David Podrasky (a1), Martin Truffer (a1), Martin Lüthi (a2) and Mark Fahnestock (a1)


Dynamic changes on Greenland outlet glaciers are a primary driver for increases in ice-sheet mass loss and its contribution to sea-level rise. One dramatic example of such change has been observed at Jakobshavn Isbræ, which has thinned, retreated and doubled in speed since the early 2000s. Complementary to large changes on decadal scales, we observe the glacier response on shorter timescales, driven by tidal forcing and calving events. During a 14 day period in August 2009, we documented changes in geometry and speed near the terminus. On this timescale, ice flow responds to forcing at the front from iceberg calving and ocean tides. We observe a step-increase in velocity near the terminus during a large calving event, with transient deceleration in the days following the event. A simple calving-response model explains 94–99% of variations in detrended positions at the four sites considered. During each day, variability due to tidal forcing covers 10–90% of the variability that remains after removing effects accounted for by the calving-response model. The influence of the tidal forcing on flow decays upstream with a characteristic length scale of 2 km, comparable with about two ice thicknesses.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland
      Available formats



Hide All
Aðalgeirsdóttir, G and 6 others (2008) Tidal influence on Rutford Ice Stream, West Antarctica: observations of surface flow and basal processes from closely spaced GPS and passive seismic stations. J. Glaciol., 54(187), 715724 (doi: 10.3189/002214308786570872)
Alley, RB, Blankenship, DD, Bentley, CR and Rooney, ST (1986) Deformation of till beneath Ice Stream B, West Antarctica. Nature, 322(6074), 5759 (doi: 10.1038/322057a0)
Amundson, JM, Truffer, M, Lüthi, MP, Fahnestock, M, West, M and Motyka, RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson, JM, Fahnestock, M, Truffer, M, Brown, J, Lüthi, MP and Motyka, RJ (2010) Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Amundson, JM, Clinton, JF, Fahnestock, M, Truffer, M, Lüthi, MP and Motyka, RJ (2012) Observing calving-generated ocean waves with coastal broadband seismometers, Jakobshavn Isbræ, Greenland. Ann. Glaciol., 53(60 Pt 1), 7984 (doi: 10.3189/2012AoG60A200)
Anandakrishnan, S and Alley, RB (1997) Tidal forcing of basal seismicity of Ice Stream C, West Antarctica, observed far inland. J. Geophys. Res., 102(B7), 15 18315 196 (doi:10.1029/97JB01073)
Anandakrishnan, S, Voigt, DE, Alley, RB and King, MA (2003) Ice Stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf. Geophys. Res. Lett., 30(7), 1361 (doi: 10.1029/2002GL016329)
Andersen, ML and 14 others (2010) Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. J. Geophys. Res., 115(F4), F04041 (doi: 10.1029/2010JF001760)
Bennett, MR (2003) Ice streams as the arteries of an ice sheet: their mechanics, stability and significance. Earth-Sci. Rev., 61(3–4), 309339 (doi: 10.1016/S0012–8252(02)00130–7)
Bindschadler, RA, King, MA, Alley, RB, Anandakrishnan, S and Padman, L (2003) Tidally controlled stick–slip discharge of a West Antarctic ice stream. Science, 301(5636), 10871089 (doi:10.1126/science.1087231)
Chen, G (1999) GPS kinematic positioning for the airborne laser altimetry at Long Valley, California. (PhD thesis, Massachusetts Institute of Technology)
Clarke, GKC (1987) Fast glacier flow: ice streams, surging and tidewater glaciers. J. Geophys. Res., 92(B9), 88358841 (doi:10.1029/JB092iB09p08835)
De Juan, J and 12 others (2010) Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier. Geophys. Res. Lett., 37(12), L12501 (doi: 10.1029/2010GL043289)
De Juan Verger, J (2011) Tidewater glacier flow of Helheim Glacier, Greenland, 2006–2008, using high-rate GPS. (PhD thesis, University of Barcelona)
Dupont, TK and Alley, RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), L04503 (doi: 10.1029/2004GL022024)
Echelmeyer, K and Harrison, WD (1990) Jakobshavns Isbræ, West Greenland: seasonal variations in velocity – or lack thereof. J. Glaciol., 36(122), 8288
Gudmundsson, GH (2006) Fortnightly variations in the flow velocity of Rutford Ice Stream, West Antarctica. Nature, 444(7122), 10631064 (doi: 10.1038/nature05430)
Gudmundsson, GH (2007) Tides and the flow of Rutford Ice Stream, West Antarctica. J. Geophys. Res., 112(F4), F04007 (doi:10.1029/2006JF000731)
Gudmundsson, GH (2011) Ice-stream response to ocean tides and the form of the basal sliding law. Cryosphere, 5(1), 259270
Harrison, WD, Echelmeyer, KA and Engelhardt, H (1993) Short-period observations of speed, strain and seismicity on Ice Stream B, Antarctica. J. Glaciol., 39(133), 463470
Holland, DM, Thomas, RH, De Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659664 (doi:10.1038/ngeo316)
Howat, IM, Joughin, I, Fahnestock, M, Smith, BE and Scambos, T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646660 (doi: 10.3189/002214308786570908)
Joughin, I and Smith, BE (2013) Further summer speedup of Jakobshavn Isbræ. Cryos. Discuss., 7(6), 54615473 (doi:10.5194/tcd-7–5461–2013)
Joughin, I, Abdalati, W and Fahnestock, MA (2004) Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432(7017), 608610 (doi: 10.1038/nature03130)
Joughin, I and 7 others (2008) Continued evolution of Jakobshavn Isbræ following its rapid speedup. J. Geophys. Res., 113(F4), F04006 (doi: 10.1029/2008JF001023)
Joughin, I, Smith, B, Howat, IM, Scambos, T and Moon, T (2010) MEaSUREs Greenland ice sheet velocity map from InSAR data. National Snow and Ice Data Center, Boulder, CO. Digital media:
Joughin, I and 6 others (2012) Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbræ, Greenland: observation and model-based analysis. J. Geophys. Res., 117(F2), F02030 (doi: 10.1029/2011JF002110)
Lomax, RG and Hahs-Vaughn, DL (2007) Statistical concepts: a second course, 3rd edn. Lawrence Erlbaum, Mahwah, NJ
Luckman, A and Murray, T (2005) Seasonal variation in velocity before retreat of Jacobshavn Isbræ, Greenland. Geophys. Res. Lett., 32(8), L08501 (doi: 10.1029/2005GL022519)
Lüthi, M, Funk, M, Iken, A, Gogineni, S and Truffer, M (2002) Mechanisms of fast flow in Jakobshavn Isbræ, West Greenland. Part III. Measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162), 369385 (doi: 10.3189/172756502781831322)
McNabb, RW and 11 others (2012) Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA. J. Glaciol., 58(212), 11511164 (doi: 10.3189/2012JoG11J249)
Moon, T and Joughin, I (2008) Changes in ice front position onGreenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res., 113(F2), F02022 (doi: 10.1029/2007JF000927)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)
Motyka, RJ, Fahnestock, M and Truffer, M (2010) Volume change of Jakobshavn Isbræ, West Greenland: 1985– 1997–2007. J. Glaciol., 56(198), 635646 (doi: 10.3189/002214310793146304)
Motyka, RJ, Truffer, M, Fahnestock, M, Mortensen, J, Rysgaard, S and Howat, I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Murray, T, Smith, AM, King, MA and Weedon, GP (2007) Ice flow modulated by tides at up to annual periods at Rutford Ice Stream, West Antarctica. Geophys. Res. Lett., 34(18), L18503 (doi: 10.1029/2007GL031207)
Nettles, M and 12 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi:10.1029/2008GL036127)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci., 2(2), 110114 (doi: 10.1038/ngeo394)
Nick, FM and 8 others (2012) The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol., 58(208), 229239 (doi: 10.3189/2012JoG11J242)
Nick, FM and 7 others (2013) Future sea-level rise from Greenland’s major outlet glaciers in a warming climate. Nature, 497(7448), 235238 (doi: 10.1038/nature12068)
Nye, JF (1960) The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. London, Ser. A, 256(1287), 559584 (doi: 10.1098/rspa.1960.0127)
O’Neel, S, Echelmeyer, KA and Motyka, RJ (2001) Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska, USA. J. Glaciol., 47(159), 567578
Pawlowicz, R, Beardsley, B and Lentz, S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28(8), 929937 (doi: 10.1016/S0098–3004(02)00013–4)
Plummer, J, Gogineni, S, Van der Veen, C, Leuschen, C and Li, J (2008) Ice thickness and bed map for Jakobshavn Isbræ. CReSIS Tech. Rep. 2008–1
Podlech, S and Weidick, A (2004) Correspondence. A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J. Glaciol., 50(168), 153154 (doi: 10.3189/172756504781830231)
Podrasky, D, Truffer, M, Fahnestock, MA, Amundson, JM, Cassotto, R and Joughin, I (2012) Outlet glacier response to forcing over hourly to interannual timescales, Jakobshavn Isbræ, Greenland. J. Glaciol., 58(212), 12121226 (doi: 10.3189/2012JoG12J065)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rodgers, J and Nicewander, W (1988) Thirteen ways to look at the correlation coefficient. Am. Stat., 42(1), 5966
Rosenau, R, Schwalbe, E, Maas, H-G, Baessler, M and Dietrich, R (2013) Grounding line migration and high-resolution calving dynamics of Jakobshavn Isbræ, West Greenland. J. Geophys. Res., 118(2), 382395 (doi: 10.1029/2012JF002515)
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402 (doi: 10.1029/2004GL020670)
Scargle, JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263(2), 835853 (doi: 10.1086/160554)
Thomas, RH (2007) Tide-induced perturbations of glacier velocities. Global Planet. Change, 59(1–4), 217224 (doi: 10.1016/j.gloplacha.2006.11.017)
Thomas, R, Frederick, E, Krabill, W, Manizade, S and Martin, C (2009) Recent changes on Greenland outlet glaciers. J. Glaciol., 55(189), 147162 (doi: 10.3189/002214309788608958)
Truffer, M and Echelmeyer, KA (2003) Of isbræ and ice streams. Ann. Glaciol., 36, 6672 (doi: 10.3189/172756403781816347)
Van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Veitch, SA and Nettles, M (2012) Spatial and temporal variations in Greenland glacial-earthquake activity, 1993–2010. J. Geophys. Res., 117(F4), F04007 (doi: 10.1029/2012JF002412)
Walter, F, Amundson, JM, O’Neel, S, Truffer, M and Fahnestock, M (2012) Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland. J. Geophys. Res., 117(F1), F01036 (doi: 10.1029/2011JF002132)
Walters, RA (1989) Small-amplitude, short-period variations in the speed of a tide-water glacier in south-central Alaska, USA. Ann. Glaciol., 12, 187191



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed