Skip to main content Accessibility help

A quantitative comparison of microfossil extraction methods from ice cores

  • SANDRA O. BRUGGER (a1) (a2), E. GOBET (a1) (a2), F. R. SCHANZ (a1), O. HEIRI (a1) (a2), C. SCHWÖRER (a1) (a2), M. SIGL (a2) (a3), M. SCHWIKOWSKI (a2) (a3) (a4) and W. TINNER (a1) (a2)...


Microfossil records from ice archives allow vegetation, fire and land-use activity reconstructions on broad spatial scales. Samples typically contain low microfossil concentrations. Therefore, large ice volumes are often needed for palynology. Hence, it is crucial to extract maximum microfossil numbers through appropriate physical-chemical treatments. We compare six methods covering the main water reduction procedures: evaporation, filtration and centrifugation with snow samples. Adding a known number of Lycopodium marker spores prior to sample treatment and a second marker (Eucalyptus) after laboratory processing allows a quantitative microfossil loss assessment during pollen extraction. We applied the best-performing method (average loss of 22%) to high-alpine firn cores from Colle Gnifetti glacier for validation with a natural archive containing extremely low microfossil concentrations. We conclude that samples processed with different microfossil extraction protocols may give different results for pollen concentrations, percentages and ratios between different pollen types, especially if vesiculate conifer pollen is an important pollen assemblage component. We recommend a new evaporation-based method which delivers the smallest and least variable losses among the tested approaches. Since microfossil losses are inevitable during laboratory procedure, adding markers prior to sample processing is mandatory to achieve reliable microfossil concentration and influx estimates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A quantitative comparison of microfossil extraction methods from ice cores
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A quantitative comparison of microfossil extraction methods from ice cores
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A quantitative comparison of microfossil extraction methods from ice cores
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Sandra O. Brugger <>


Hide All
Ambach, W, Bortenschlager, S and Eisner, H (1966) Pollen-analysis investigation of a 20 m. Firn Pit on the Kesselwandferner (Ötztal Alps). J. Glaciol., 6(44), 233236 (doi: 10.3189/S0022143000019249)
Ammann, B and Tobolski, K (1983) Vegetational development during the late-Würm at Lobsigensee (Swiss Plateau) (studies in the late quaternary at Lobsigensee 1). Rev. Paleobiol., 2, 163180
Andreev, AA, Nikolaev, VI, Bolíshiyanov, DY and Petrov, VN (1997) Pollen and isotope investigations of an ice core from Vavilov ice cap, October Revolution Island, Severnaya Zemlya Archipelago, Russia. Geogr. Phys. Quat., 51(3), 379389 (doi: 10.7202/033137ar)
Benninghoff, WS (1962) Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen Spores., 4, 332333
Beug, H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München
Birks, HJB and Birks, HH (1980) Quaternary palaeoecology. Edward Arnold, London
Birks, HJB and Gordon, AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London
Bourgeois, JC (1990) A modern pollen spectrum from Dye 3, south Greenland ice sheet. J. Glaciol., 36(124), 340342 (doi: 10.3189/002214390793701363)
Bourgeois, JC (2000) Seasonal and interannual pollen variability in snow layers of Arctic ice caps. Rev. Palaeobot. Palynol., 108, 1736 (doi: 10.1016/S0034-6667(99)00031-7)
Bourgeois, JC, Koerner, RM, Gajewski, K and Fisher, DA (2000) A holocene ice-core pollen record from Ellesmere Island, Nunavut, Canada. Quat. Res,. 54, 275283 (doi: 10.1006/qres.2000.2156)
Bourgeois, JC, Gajewski, K and Koerner, RM (2001) Spatial patterns of pollen deposition in arctic snow. J. Geophys. Res. Atmos., 106(D6), 52555265 (doi: 10.1029/2000JD900708)
Brugger, SO and 13 others (2016) Long-term man–environment interactions in the Bolivian Amazon: 8000 years of vegetation dynamics. Quat. Sci. Rev., 132, 114128 (doi: 10.1016/j.quascirev.2015.11.001)
Campbell, JFE, Fletcher, WJ, Hughes, PD and Shuttleworth, EL (2016) A comparison of pollen extraction methods confirms dense-media separation as a reliable method of pollen preparation. J. Quat. Sci., 31(6), 631640 (doi: 10.1002/jqs.2886)
Dark, P and Allen, JRL (2005) Seasonal deposition of Holocene banded sediments in the Severn Estuary Levels (southwest Britain): palynological and sedimentological evidence. Quat. Sci. Rev., 24(1), 1133 (doi: 10.1016/j.quascirev.2004.08.001)
Davis, MB and Brubaker, LB (1973) Differential sedimentation of pollen grains in lakes. Limnol. Oceanogr., 18(4), 635646 (doi: 10.4319/lo.1973.18.4.0635)
Dietrich, W (1923) Die Erscheinungen an den Grenzflächen. In Einführung in die Physikalische Chemie für Biochemiker, Mediziner, Pharmazeuten und Naturwissenschaftler. Springer, Berlin Heidelberg, 1105
Eichler, A and 5 others (2011) An ice-core based history of Siberian forest fires since AD 1250. Quat. Sci. Rev., 30(9), 10271034 (doi: 10.1016/j.quascirev.2011.02.007)
Ellenberg, H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 5th edn. Ulmer, Stuttgart
Faegri, K and Iversen, J (1989) Textbook of pollen analysis. 4th edn. Wiley, Winchester
Festi, D and 6 others (2015) A novel pollen-based method to detect seasonality in ice cores: a case study from the Ortles glacier, South Tyrol, Italy. J. Glaciol., 61(229), 815824 (doi: 10.3189/2015JoG14J236)
Festi, D, Hoffmann, DL and Luetscher, M (2016) Pollen from accurately dated speleothems supports alpine glacier low-stands during the early Holocene. Quat. Res., 86(1), 4553 (doi: 10.1016/j.yqres.2016.05.003)
Feurdean, A, Perşoiu, A, Pazdur, A and Onac, BP (2011) Evaluating the palaeoecological potential of pollen recovered from ice in caves: a case study from Scărişoara Ice Cave, Romania. Rev. Palaeobot. Palynol., 165(1), 110 (doi: 10.1016/j.revpalbo.2011.01.007)
Finsinger, W and Tinner, W (2005) Minimum count sums for charcoal concentration estimates in pollen slides: accuracy and potential errors. Holocene, 15(2), 293297 (doi: 10.1191/0959683605hl808rr)
Fredskild, B and Wagner, P (1974) Pollen and fragments of plant tissue in core samples from the Greenland ice cap. Boreas, 3(3), 105108 (doi: 10.1111/j.1502-3885.1974.tb00668.x)
Giesecke, T and Fontana, SL (2008) Revisiting pollen accumulation rates from Swedish lake sediments. Holocene, 18(2), 293305 (doi: 10.1177/0959683607086767)
Herren, PA and 6 others (2013) The onset of Neoglaciation 6000 years ago in western Mongolia revealed by an ice core from the Tsambagarav mountain range. Quat. Sci. Rev., 69, 5968 (doi: 10.1016/j.quascirev.2013.02.025)
Hicks, S and Isaksson, E (2006) Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice. J. Geophys. Res. Atmos., 111(D2), D02113 (doi: 10.1029/2005JD006167)
Holmes, PL (1990) Differential transport of spores and pollen: a laboratory study. Rev. Palaeobot. Palynol., 64(1-4), 289296 (doi: 10.1016/0034-6667(90)90144-8)
Hopkins, JS (1950) Differential flotation and deposition of coniferous and deciduous tree pollen. Ecology, 31(4), 633641 (doi: 10.2307/1931580)
Jenk, TM and 9 others (2009) A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. J. Geophys. Res. Atmos., 114(D14), D14305 (doi: 10.1029/2009JD011860)
Koerner, RM, Bourgeois, JC and Fisher, DA (1988) Pollen analysis and discussion of time-scales in Canadian ice cores. Ann. Glaciol., 10, 8591 (doi: 10.1017/S0260305500004225)
Konrad, H, Bohleber, P, Wagenbach, D, Vincent, C and Eisen, O (2013) Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model. J. Glaciol., 59(213), 179189 (doi: 10.3189/2013JoG12J072)
Lang, G (1994) Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Gustav Fischer, Jena
Lauber, K and Wagner, G (2012) Flora helvetica. 5th edn. Haupt, Bern
Liu, KB, Yao, Z and Thompson, LG (1998) A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology, 26(2), 135138 (doi: 10.1130/0091-7613(1998)026<0135:APROHC>2.3.CO;2)
Liu, KB, Reese, CA and Thompson, LG (2005) Ice-core pollen record of climatic changes in the central Andes during the last 400 yr. Quat. Res., 64(2), 272278 (doi: 10.1016/j.yqres.2005.06.001)
Liu, KB, Reese, CA and Thompson, LG (2007) A potential pollen proxy for ENSO derived from the Sajama ice core. Geophys. Res. Let., 34(9), L09504 (doi: 10.1029/2006GL029018)
Maher, LJ (1981) Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol., 32(2–3), 153191 (doi: 10.1016/0034-6667(81)90002-6)
Maher, LJ, Heiri, O and Lotter, AF (2012) Assessment of uncertainties associated with palaeolimnological laboratory methods and microfossil analysis. In Birks, H, Lotter, A, Juggins, S and Smol, J, eds. Tracking environmental change using lake sediments. Springer, Dordrecht, 143166 (doi: 10.1007/978-94-007-2745-8_6)
Mariani, I and 6 others (2014) Temperature and precipitation signal in two Alpine ice cores over the period 1961-2001. Clim. Past, 10(3), 1093 (doi: 10.5194/cp-10-1093-2014)
McAndrews, JH (1984) Pollen analysis of the 1973 ice core from Devon Island Glacier, Canada. Quat. Res., 22(1), 6876 (doi: 10.1016/0033-5894(84)90007-3)
Moore, PD, Webb, JA and Collison, ME (1991) Pollen analysis. Blackwell Scientific Publications, Oxford
Nakazawa, F and Fujita, K (2006) Use of ice cores from glaciers with melting for reconstructing mean summer temperature variations. Ann. Glaciol., 43(1), 167171 (doi: 10.3189/172756406781812302)
Nakazawa, F, Fujita, K, Uetake, J, Kohno, M, Fujiki, T, Arkhipov, SM, Kameda, T, Suzuki, K and Fujii, Y (2004) Application of pollen analysis to dating of ice cores from lower-latitude glaciers. J. Geophys. Res. Earth. Surf., 109(F4), F04001 (doi: 10.1029/2004JF000125)
Nakazawa, F and 6 others (2005) Dating of seasonal snow/firn accumulation layers using pollen analysis. J. Glaciol., 51(174), 483490 (doi: 10.3189/172756505781829179)
Nakazawa, F and 7 others (2011) Establishing the timing of chemical deposition events on Belukha glacier, Altai Mountains, Russia, using pollen analysis. Arct. Antarc. Alp. Res., 43(1), 6672 (doi: 10.1657/1938-4246-43.1.66)
Neff, PD and 5 others (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. J. Glaciol., 58(212), 11651175 (doi: 10.3189/2012JoG12J078)
Olivier, S, and 8 others (2006) Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. J. Geophys. Res. Atmos., 111(D5), D05309 (doi: 10.1029/2005JD005830)
Owens, JN, Takaso, T and Runions, CJ (1998) Pollination in conifers. Trends Plant Sci., 3(12), 479–F04485 (doi: 10.1016/S1360-1385(98)01337-5)
Papina, T and 5 others (2013) Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past, 9(5), 23992411 (doi: 10.5194/cp-9-2399-2013)
Peck, RM (1972) Efficiency tests on the Tauber trap used as a pollen sampler in turbulent water flow. New Phytol., 71(1), 187198 (doi: 10.1111/j.1469-8137.1972.tb04827.x)
Peck, RM (1974) A comparison of four absolute pollen preparation techniques. New Phytol., 73(3), 567587 (doi: 10.1111/j.1469-8137.1974.tb02133.x)
Preunkert, S, Wagenbach, D and Legrand, M (2003) A seasonally resolved alpine ice core record of nitrate: comparison with anthropogenic inventories and estimation of preindustrial emissions of NO in Europe. J. Geophys. Res. Atmos., 108(D21), 10 (doi: 10.1029/2003JD003475)
Reese, CA and Liu, KB (2002) Pollen dispersal and deposition on the Quelccaya Ice Cap, Peru. Phys. Geogr., 23(1), 4458 (doi: 10.2747/0272-3646.23.1.44)
Reese, CA and Liu, KB (2005) Interannual variability in pollen dispersal and deposition on the tropical Quelccaya Ice Cap. Prof. Geogr., 57(2), 185197 (doi: 10.1111/j.0033-0124.2005.00471.x)
Reese, CA, Liu, KB and Mountain, KR (2003) Pollen dispersal and deposition on the ice cap of Volcán Parinacota, southwestern Bolivia. Arct. Antar. Alp. Res., 35(4), 469474
Rey, F and 10 others (2017) Vegetational and agricultural dynamics at Burgäschisee (Swiss Plateau) recorded for 18,700 years by multi-proxy evidence from partly varved sediments. Veget. Hist. Archaeobot., 26(6), 571586 (doi: 10.1007/s00334-017-0635-x)
Runions, CJ, Rensing, KH, Takaso, T and Owens, JN (1999) Pollination of Picea orientalis (Pinaceae): saccus morphology governs pollen buoyancy. Am. J. Bot., 86(2), 190197 (doi: 10.2307/2656936)
Santibañez, P and 8 others (2008) Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. J. Glaciol., 54(186), 452462 (doi: 10.3189/002214308785837101)
Schwikowski, M, Schläppi, M, Santibañez, P, Rivera, A and Casassa, G (2013) Net accumulation rates derived from ice core stable isotope records of Pío XI glacier, Southern Patagonia Icefield. Cryosphere, 7(5), 16351644 (doi: 10.5194/tc-7-1635-2013)
Short, SK and Holdsworth, G (1985) Pollen, oxygen isotope content and seasonally in an ice core from the penny Ice Cap, Baffin Island. Arctic, 38(3), 214218 (doi: 10.14430/arctic2136)
Sigl, M, and 10 others (2009) Towards radiocarbon dating of ice cores. J. Glaciol., 55(194), 985996 (doi: 10.3189/002214309790794922)
Stockmarr, J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores, XIII(4), 615621
Ter Braak, CJF and Prentice, IC (1988) A theory of gradient analysis. Adv Ecol Res 18, 271317 (doi: 10.1016/S0065-2504(03)34003-6)
Ter Braak, CJF and Šmilauer, P (2002) Canoco for windows version 4.5. Biometris–Plant Research International, Wageningen
Uetake, J and 7 others (2006) Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann. Glaciol., 43(1), 7078 (doi: 10.3189/172756406781811925)
Vareschi, V (1934) Pollenanalysen aus Gletschereis. Ber. Geobot. Inst. Eidgenöss. Tech. Hochsch. Stift. Rübel, 1934, 8199
von Post, L (1916) Einige südschwedischen Quellmoore. Bull. Geol. Inst. Univ. Upsala, 15, 219278
Welten, M (1944) Pollenanalytische, stratigraphische und geochronologische Untersuchungen aus dem Faulenseemoos bei Spiez (Vol. 21). Huber, Zürich
Yang, B, Tang, L, Bräuning, A, Davis, ME, Shao, J and Jingjing, L (2008) Summer temperature reconstruction on the central Tibetan Plateau during 1860–2002 derived from annually resolved ice core pollen. J. Geophys. Res. Atmos., 113(D24), D24102 (doi: 10.1029/2008JD010142)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Brugger et al. supplementary material
Tables S1-S2

 Word (36 KB)
36 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed