Skip to main content Accessibility help
×
Home

Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance

  • Patrick Wagnon (a1) (a2), Fanny Brun (a1) (a3), Arbindra Khadka (a2) (a4), Etienne Berthier (a5), Dibas Shrestha (a4), Christian Vincent (a1), Yves Arnaud (a1), Delphine Six (a1), Amaury Dehecq (a6) (a7), Martin Ménégoz (a1) and Vincent Jomelli (a8) (a9)...

Abstract

The 2007–19 glaciological mass-balance series of Mera Glacier in the Everest Region, East Nepal, is reanalysed using the geodetic mass balance assessed by differencing two DEMs obtained from Pléiades stereo-images acquired in November 2012 and in October 2018. The glaciological glacier-wide annual mass balance of Mera Glacier has to be systematically decreased by 0.11 m w.e. a−1 to match the geodetic mass balance. We attribute part of the positive bias of the glaciological mass balance to an over-estimation of the accumulation above 5520 m a.s.l., likely due to a measurement network unable to capture its spatial variability. Over the period 2007–19, Mera Glacier has lost mass at a rate of −0.41 ± 0.20 m w.e. a−1, in general agreement with regional averages for the central Himalaya. We observe a succession of negative mass-balance years since 2013.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Patrick Wagnon, E-mail: Patrick.wagnon@univ-grenoble-alpes.fr

References

Hide All
Acharya, A and Kayastha, RB (2019) Mass and energy balance estimation of Yala Glacier (2011–2017), Langtang Valley, Nepal. Water 11(6), 117. doi: 10.3390/w11010006.
Andreassen, LM, Elvehøy, H, Kjøllmoen, B and Engeset, RV (2016) Reanalysis of long-term series of glaciological and geodetic mass balance for 10 Norwegian glaciers. The Cryosphere 10, 535552. doi: 10.5194/tc-10-535-2016
Azam, FM and 10 others (2016) Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India. Annals of Glaciology 71, 328338. doi:10.3189/2016AoG71A570.
Azam, FM and 5 others (2018) Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology 64(243), 6174. doi: 10.1017/jog.2017.86.
Belart, JMC and 9 others (2017) Winter mass balance of Drangajökull ice cap (NW Iceland) derived from satellite sub-meter stereo images. The Cryosphere 11, 15011517. doi:10.5194/tc-11-1501-2017.
Berthier, E and 10 others (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. The Cryosphere 8, 22752291. doi:10.5194/tc-8-2275-2014.
Bolch, T and 11 others (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya region. In Wester, P, Mishra, A, Mukherji, A and Shrestha, AB (eds), The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People. Cham: Springer International Publishing, pp. 209255. doi:10.1007/978-3-319-92288-1_7.
Brun, F and 6 others (2019) Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. Journal of Geophysical Research: Atmosphere 124(6), 13311345. doi: https://doi.org/10.1029/2018JF004838.
Brun, F, Berthier, E, Wagnon, P, Kääb, A and Treichlert, D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nature Geoscience 10(9), 668673. doi: 10.1038/NGEO2999
Cuffey, KM and Paterson, WSB (2010) The Physics of Glaciers, 4th Edn. Amsterdam: Academic Press Inc.
Dolman, AJ and 7 others (2016) A post-Paris look at climate observations. Nature Geoscience 9(9), 646646.
Gardner, AS, Fahnestock, MA and Scambos, TA (2019) ITS_LIVE regional glacier and ice sheet surface velocities. Data archived at National Snow and Ice Data Center. doi: 10.5067/6II6VW8LLWJ7
Höhle, J and Höhle, M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. {ISPRS} Journal of Photogrammetry and Remote Sensing 64(4), 398406. doi: http://dx.doi.org/10.1016/j.isprsjprs.2009.02.003
Huss, M (2013) Density assumptions for converting geodetic glacier volume change to mass change. The Cryosphere 7(3), 877887. doi: 10.5194/tc-7-877-2013
Huss, M, Bauder, A and Funk, M (2009) Homogenization of long-term mass-balance time series. Annals of Glaciology 50(50), 198206. doi: 10.3189/172756409787769627
Huss, M, Dhulst, L and Bauder, A (2015) New long-term mass-balance series for the Swiss Alps. Journal of Glaciology 61(227), 551562. doi: 10.3189/2015JoG15J015
Immerzeel, WW and 31 others (2019) Importance and vulnerability of the world's water towers. Nature 577(7790), 364369. doi:10.1038/s41586-019-1822-y.
Kapitsa, V and 5 others (2020) Assessment of changes in mass balance of the Tuyuksu group of glaciers, northern Tien Shan between 1958 and 2016 using ground-based observations and Pleiades satellite imagery. Frontiers in Earth Science 8, 259272. doi: 10.3389/feart.2020.00259.
Klug, C and 8 others (2018) Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria. The Cryosphere 12(3), 833849. doi:10.5194/tc-12-833-2018.
Litt, M and 6 others (2019) Glacier ablation and temperature indexed melt models in the Nepalese Himalaya. Scientific Reports 9(5264), 113. doi: 10.1038/s41598-019-41657-5.
Marti, R and 5 others (2016) Mapping snow depth in open alpine terrain from stereo satellite imagery. The Cryosphere 10, 13611380. doi:10.5194/tc-10-1361-2016.
McNabb, R, Nuth, C, Kääb, A and Girod, L (2019) Sensitivity of glacier volume change estimation to DEM void interpolation. The Cryosphere 13, 895910. doi:10.5194/tc-13-895-2019.
Miles, ES and 8 others (2018) Glacial and geomorphic effects of a supraglacial lake drainage and outburst event, Everest region, Nepal Himalaya. The Cryosphere 12(12), 38913905. doi:10.5194/tc-12-3891-2018.
Nuimura, T and 5 others (2011) Temporal changes in elevation of the debris-covered ablation area of Khumbu Glacier in the Nepal Himalaya since 1978. Arctic, Antarctic, and Alpine Research 43(2), 246255. doi: 10.1657/1938-4246-43.2.246.
Nuth, C and Kääb, A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. The Cryosphere 5(1), 271290. doi: 10.5194/tc-5-271-2011
Nye, JF (1965) The flow of a glacier in a channel of rectangular, elliptic or parabolic cross section. Journal of Glaciology 5(41), 661690.
Oerlemans, J (2001) Glaciers and Climate Change: A Meteorologist's View Lisse. The Netherlands: A.A. Balkema.
O'Neel, S and 8 others (2019) Reanalysis of the US Geological Survey Benchmark Glaciers: long-term insight into climate forcing of glacier mass balance. Journal of Glaciology 65(253), 850866. doi: 10.1017/jog.2019.66.
Pfeffer, WT and 18 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60, 537552. doi:10.3189/2014JoG13J176.
Pritchard, HD (2019) Asia's shrinking glaciers protect large populations from drought stress. Nature 569, 649654. doi: 10.1038/s41586-019-1240-1
Reynaud, L, Vallon, M and Letreguilly, A (1986) Mass-balance measurements: problems and two new methods of determining variations. Journal of Glaciology 32(112), 446454.
Rieg, L, Klug, C, Nicholson, L and Sailer, R (2018) Pléiades Tri-Stereo Data for Glacier Investigations—Examples from the European Alps and the Khumbu Himal. Remote Sensing 10(10), 1563. doi: 10.3390/rs10101563
Shean, DE and 6 others (2016) An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. {ISPRS} Journal of Photogrammetry and Remote Sensing 116, 101117. doi:10.1016/j.isprsjprs.2016.03.012.
Shean, DE and 5 others (2020) A systematic, regional assessment of high mountain Asia glacier mass balance. Frontiers in Earth Science 7, 363381. doi: 10.3389/feart.2019.00363.
Sherpa, SF and 8 others (2017) Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007-2015). Journal of Glaciology 63(240), 637651. doi: 10.1017/jog.2017.30.
Sunako, S, Fujita, K, Sakai, A and Kayastha, RB (2019) Mass balance of Trambau Glacier, Rolwaling region, Nepal Himalaya: in-situ observations, long-term reconstruction and mass balance sensitivity. Journal of Glaciology 65(252), 605616. doi: 10.1017/jog.2019.37
Thibert, E, Blanc, R, Vincent, C and Eckert, N (2008) Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. Journal of Glaciology 54(186), 522532. doi: 10.3189/002214308785837093
Thibert, E and Vincent, C (2009) Best possible estimation of mass balance combining glaciological and geodetic methods. Annals of Glaciology 50(50), 112118. doi: 10.3189/172756409787769546
Vincent, C and 10 others (2016) Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. The Cryosphere 10, 18451858. doi:10.5194/tc-10-1845-2016.
Vincent, C and 14 others (2018) A nonlinear statistical model for extracting a climate signal from glacier mass balance measurements. Journal of Geophysical Research – Earth Surface 123, 22282242. doi:10.1029/2018JF004702.
Wagnon, P and 11 others (2013) Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. The Cryosphere 7, 17691786. doi:10.5194/tc-7-1769-2013.
Zemp, M and 16 others (2013) Reanalysing glacier mass balance measurement series. The Cryosphere 7, 12271245. doi: 10.5194/ tc-7-1227-2013.
Zemp, M and 14 others (2019) Global glacier mass changes and their contributions to sea level rise from 1961 to 2016. Nature 568, 382386. doi:10.1038/s41586-019-1071-0.

Keywords

Type Description Title
PDF
Supplementary materials

Wagnon et al. supplementary material
Wagnon et al. supplementary material

 PDF (1.3 MB)
1.3 MB

Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance

  • Patrick Wagnon (a1) (a2), Fanny Brun (a1) (a3), Arbindra Khadka (a2) (a4), Etienne Berthier (a5), Dibas Shrestha (a4), Christian Vincent (a1), Yves Arnaud (a1), Delphine Six (a1), Amaury Dehecq (a6) (a7), Martin Ménégoz (a1) and Vincent Jomelli (a8) (a9)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.