Skip to main content
×
×
Home

Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse

  • Robert L. Hawley (a1), Zoe R. Courville (a2), Laura M. Kehrl (a1), Eric R. Lutz (a1), Erich C. Osterberg (a1), Thomas B. Overly (a1) and Gifford J. Wong (a1)...
Abstract
Abstract

Accumulation is a key parameter governing the mass balance of the Greenland ice sheet. Several studies have documented the spatial variability of accumulation over wide spatial scales, primarily using point data, remote sensing or modeling. Direct measurements of spatially extensive, detailed profiles of accumulation in Greenland, however, are rare. We used 400 MHz ground-penetrating radar along the 1009 km route of the Greenland Inland Traverse from Thule to Summit during April and May of 2011, to image continuous internal reflecting horizons. We dated these horizons using ice-core chemistry at each end of the traverse. Using density profiles measured along the traverse, we determined the depth to the horizons and the corresponding water-equivalent accumulation rates. The measured accumulation rates vary from ~0.1 m w.e. a–1 in the interior to ~0.7 m w.e. a–1 near the coast, and correspond broadly with existing published model results, though there are some excursions. Comparison of our recent accumulation rates with those collected along a similar route in the 1950s shows a ~10% increase in accumulation rates over the past 52 years along most of the traverse route. This implies that the increased water vapor capacity of warmer air is increasing accumulation in the interior of Greenland.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse
      Available formats
      ×
Copyright
References
Hide All
Alley RB, Spencer MK and Anandakrishnan S (2007) Ice-sheet mass balance: assessment, attribution and prognosis. Ann. Glaciol., 46, 17 (doi: 10.3189/172756407782871738)
Arcone SA, Spikes VB and Hamilton GS (2005) Stratigraphic variation in polar firn caused by differential accumulation and ice flow: interpretation of a 400 MHz short-pulse radar profile from West Antarctica. J. Glaciol., 51(174), 407422 (doi: 10.3189/172756505781829151)
Bales RC and 8 others (2009) Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. J. Geophys. Res., 114(D6), D06301 (doi: 10.1029/2008JD010600)
Benson CS (1962) Stratigraphic studies in the snow and firn of the Greenland ice sheet. SIPRE Res. Rep. 70, 7683
Black HP and Budd W (1964) Accumulation in the region of Wilkes, Wilkes Land, Antarctica. J. Glaciol., 5(37), 315
Box JE, Bromwich DH and Bai L-S (2004) Greenland ice sheet surface mass balance for 1991–2000: application of Polar MM5 mesoscale model and in-situ data. J. Geophys. Res., 109(D16), D16105 (doi: 10.1029/2003JD004451)
Box JE and 10 others (2013) Greenland ice sheet mass balance reconstruction. Part I: net snow accumulation (1600– 2009). J. Climate, 26(11), 39193934 (doi: 10.1175/JCLI-D-12–00373.1)
Burgess EW and 6 others (2010) A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). J. Geophys. Res., 115(F2), F02004 (doi: 10.1029/2009JF001293)
Davis CH, Li Y, McConnell JR, Frey MM and Hanna E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science, 308(5730), 18981901 (doi: 10.1126/science.1110662)
Dibb JE and Fahnestock M (2004) Snow accumulation, surface height change, and firn densification at Summit, Greenland: insights from 2 years of in situ observation. J. Geophys. Res., 109(D24), D24113 (doi: 10.1029/2003JD004300)
Drinkwater MR, Long DG and Bingham AW (2001) Greenland snow accumulation estimates from satellite radar scatterometer data. J. Geophys. Res., 106(D24), 33 93533 950 (doi: 10.1029/2001JD900107)
Hanna E and 12 others (2011) Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res., 116(D24), D24121 (doi: 10.1029/2011JD016387)
Hawley RL, Morris EM, Cullen R, Nixdorf U, Shepherd AP and Wingham DJ (2006) ASIRAS airborne radar resolves internal annual layers in the dry-snow zone of Greenland. Geophys. Res. Lett., 33(4), L04502 (doi: 10.1029/2005GL025147)
Hawley RL, Morris EM and McConnell JR (2008) Rapid techniques for determining annual accumulation applied at Summit, Greenland. J. Glaciol., 54(188), 839845 (doi: 10.3189/002214308787779951)
Kanagaratnam P, Gogineni SP, Gundestrup N and Larsen L (2001) High-resolution radar mapping of internal layers at the North Greenland Ice Core Project. J. Geophys. Res., 106(D24), 33 79933 811 (doi: 10.1029/2001JD900191)
Karlöf L and 11 others (2005) Accumulation variability over a small area in east Dronning Maud Land, Antarctica, as determined from shallow firn cores and snow pits: some implications for ice-core records. J. Glaciol., 51(174), 343352 (doi: 10.3189/172756505781829232)
King RW and Bock Y (2009) Documentation for the GAMIT GPS Analysis Software, release 10.35. Massachusetts Institute of Technology, Cambridge, MA
Kovacs A, Gow AJ and Morey RM (1995) The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol., 23(3), 245256 (doi: 10.1016/0165–232X(94)00016-Q)
Lemke P and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon S and 7 others eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 339383
McConnell JR and 7 others (2000) GAMIT 10.35 analysis software. Nature, 406(6798), 877879 (doi: 10.1038/35022555)
Miège C and 6 others (2013) Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Ann. Glaciol., 54(63 Pt 2), 322332 (doi: 10.3189/2013AoG63A358)
Mosley-Thompson E and 8 others (2001) Local to regional-scale variability of annual net accumulation on the Greenland ice sheet from PARCA cores. J. Geophys. Res., 106(D24), 33 83933 851 (doi: 10.1029/2001JD900067)
Ohmura A and Reeh N (1991) New precipitation and accumulation maps for Greenland. J. Glaciol., 37(125), 140148
Osterberg EC, Handley MJ, Sneed SB, Mayewski PA and Kreutz KJ (2006) Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environ. Sci. Technol., 40(10), 33553361 (doi: 10.1021/es052536w)
Rayner NA and 7 others (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407 (doi: 10.1029/2002JD002670)
Rignot E, Box JE, Burgess E and Hanna E (2008) Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502 (doi: 10.1029/2008GL035417)
Spikes VB, Hamilton GS, Arcone SA, Kaspari S and Mayewski P (2004) Variability in accumulation rates from GPR profiling on the West Antarctic plateau. Ann. Glaciol., 39, 238244 (doi: 10.3189/172756404781814393)
Wong GJ, Hawley RL, Lutz ER and Osterberg EC (2013) Trace-element and physical response to melt percolation in Summit (Greenland) snow. Ann. Glaciol., 54(63 Pt 1), 5262 (doi: 10.3189/2013AoG63A602)
Wouters B, Chambers D and Schrama EJO (2008) GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett., 35(2), L20501 (doi: 10.1029/2008GL034816)
Zwally HJ and 11 others (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57(201), 88102 (doi: 10.3189/002214311795306682)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 42 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 23rd February 2018. This data will be updated every 24 hours.