Skip to main content
×
×
Home

Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions

  • J. Rachel Carr (a1), Chris Stokes (a1) and Andreas Vieli (a2)
Abstract

Substantial ice loss has occurred in the Russian High Arctic during the past decade, predominantly on Novaya Zemlya, yet the region has been studied relatively little. Consequently, the factors forcing mass loss and the relative contribution of ice dynamics versus surface melt are poorly understood. Here we evaluate the influence of atmospheric/oceanic forcing and variations in fjord width on the behaviour of 38 glaciers on the northern ice cap, Novaya Zemlya. We compare retreat rates on land- versus marine-terminating outlets and on the Kara versus Barents Sea coasts. Between 1992 and 2010, 90% of the study glaciers retreated and retreat rates were an order of magnitude higher for marine-terminating outlets (52.1 ma-1) than for land-terminating glaciers (4.8ma-1). We identify a post-2000 acceleration in marine-terminating glacier retreat, which corresponded closely to changes in sea-ice concentrations. Retreat rates were higher on the Barents Sea coast, which we partly attribute to lower sea-ice concentrations, but varied dramatically between individual glaciers. We use empirical data to categorize changes in along-flow fjord width, and demonstrate a significant relationship between fjord width variability and retreat rate. Results suggest that variations in fjord width exert a major influence on glacier retreat.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions
      Available formats
      ×
Copyright
References
Hide All
Amundson, JM, Fahnestock, M, Truffer, M, Brown, J, Luthi, MP and Motyka, RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Andersen, ML and 14 others (2010) Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics. J. Geophys. Res., 115(F4), F04041 (doi: 10.1029/2010JF001760)
Andresen, CS and 10 others (2012) Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geosci., 5(1), 37-H (doi: 10.1038/ngeo1349)
Arendt, A and 77 others (2012) Randolph Glacier Inventory (RGI), Vers. 1.0: a dataset of Global Glacier Outlines. Global Land Ice Measurements from Space, Boulder, CO. Digital media: http://www.glims.org/RGI/randolph.html
Arthun, M, Ingvaldsen, RB, Smedsrud, LH and Schrum, C (2011) Dense water formation and circulation in the Barents Sea. Deep-Sea Res. I, 58(8), 801817 (doi: 10.1016/j.dsr.2011.06.001)
Bassford, RP, Siegert, MJ and Dowdeswell, JA (2006) Quantifying the mass balance of ice caps on Severnaya Zemlya, Russian High Arctic. III: Sensitivity of ice caps in Severnaya Zemlya to future climate change. Arct. Antarct. Alp. Res., 38(1), 2133
Benn, DI, Warren, CW and Mottram, RH (2007) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(3–4), 143179 (doi: 10.1016/j.earscirev.2007.02.002)
Burgess, D and Sharp, MJ (2008) Recent changes in thickness of the Devon Island ice cap, Canada. J. Geophys. Res., 113(B7), B07204 (doi: 10.1029/2007JB005238)
Carr, JR, Stokes, CR and Vieli, A (2013a) Recent progress in understanding marine-terminating Arctic outlet glacier response to climatic and oceanic forcing. Twenty years of rapid change. Progr. Phys. Geogr., 37(4), 436467 (doi: 10.1177/0309133313483163)
Carr, JR, Vieli, A and Stokes, CR (2013b) Climatic, oceanic and topographic controls on marine-terminating outlet glacier behavior in north-west Greenland at seasonal to interannual timescales. J. Geophys. Res., 118(3), 12101226 (doi: 10.1002/jgrf.20088)
Christoffersen, P and 7 others (2011) Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions. Cryosphere, 5(3), 701714 (doi: 10.5194/tc-5–701–2011)
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597 (doi: 10.1002/qj.828)
Dowdeswell, JA and Williams, M (1997) Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. J. Glaciol., 43(145), 489194
Dowdeswell, JA and 10 others (1997) The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48(1), 114
Dowdeswell, JA, Benham, TJ, Strozzi Tand Hagen, JO (2008) Iceberg calving flux and mass balance of the Austfonna ice cap on Nordaustlandet, Svalbard. J. Geophys. Res., 113(F3), F03022 (doi: 10.1029/2007JF000905)
Enderlin, EM and Howat, IM (2013) Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010). J. Glaciol., 59(213), 6775 (doi: 10.3189/2013JoG12J049)
Gardner, AS and 8 others (2011) Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature, 473(7347), 357360 (doi: 10.1038/nature10089)
Gardner, A, Moholdt, G, Arendt, A and Wouters, B (2012) Accelerated contributions of Canada’s Baffin and Bylot Island glaciers to sea level rise over the past half century. Cryosphere, 6(5), 11031125 (doi: 10.5194/tc-6–1103–2012)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Goelzer, H and 8 others (2013) Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol., 59(216), 733749 (doi: 10.3189/2013JoG12J182)
Grant, KL, Stokes, CR and Evans, IS (2009) Identification and characteristics of surge-type glaciers on Novaya Zemlya, Russian Arctic. J. Glaciol., 55(194), 960972 (doi: 10.3189/002214309790794940)
Hanzlick, D and Aagaard, K (1980) Freshwater and Atlantic water in the Kara Sea. J. Geophys. Res., 85(C9), 49374942 (doi: 10.1029/JC085iC09p04937)
Holland, DM, Thomas, RH, De Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659664 (doi: 10.1038/ngeo316)
Howat, IM, Joughin, I, Fahnestock, M, Smith, BE and Scambos, T (2008) Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646660 (doi: 10.3189/002214308786570908)
Howat, IM, Box, JE, Ahn, Y, Herrington, A and McFadden, EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)
Hurrell, JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269(5224), 676679 (doi: 10.1126/science.269.5224.676)
Ivanov, VV and Shapiro, GI (2005) Formation of a dense water cascade in the marginal ice zone in the Barents Sea. Deep-Sea Res. I, 52(9), 16991717 (doi: 10.1016/j.dsr.2005.04.004)
Jamieson, SSR and 6 others (2012) Ice-stream stability on a reverse bed slope. Nature Geosci., 5(11), 799802 (doi: 10.1038/ngeo1600)
Joughin, I and 7 others (2008) Continued evolution of Jakobshavn Isbra following its rapid speedup. J. Geophys. Res., 113(F4), F04006 (doi: 10.1029/2008JF001023)
Kalnay, E and 21 others (1996) The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77(3), 437471 (doi: 10.1175/1520–0477(1996)077<0437:TNYRP>2.0.CO;2)
Karcher, MJ, Kulakov, M, Pivovarov, S, Schauer, U, Kauker, F and Schlitzer, R (2003) Atlantic water flow to the Kara Sea: comparing model results with observations. In Stein, R, Fahl, K, Futterer, DK, Galimov, EM and Stepanets, OV eds. Siberian river run-off in the Kara Sea: characterisation, quantification, variability and environmental significance. (Proceedings in Marine Science 6) Elsevier, Amsterdam, 4769
Korona, J, Berthier, E, Bernard, M, Reemy, F and Thouvenot, E (2009) SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth International Polar Year (2007–2009). ISPRS J. Photogramm. Remote Sens., 64(2), 204212 (doi: 10.1016/j.isprsjprs.2008.10.005)
Kotlyakov, VM ed. (1978) Katalog lednikov SSSR: Tom 3, Severnyj Kraj, Chast’ 2 Novaja Zemlja [Catalogue of glaciers of USSR: Volume 3, Northern Area, Part 2, Novaya Zemlya]. Hydro-meteoizdat, Leningrad [in Russian]
Kotlyakov, VM ed. (2006) Oledenenie Severnoj i Central’noj Evrazii v Sovremennuju epochu [Glaciation in north and central Eurasia at presenttime]. Nauka, Moscow [in Russian with English summary]
Kotlyakov, VM, Glazovsii, AF and Frolov, IE (2010) Glaciation in the Arctic: causes and effects of global changes. Herald Russ. Acad. Sci., 80(2), 155164 (doi: 10.1134/S1019331610020073)
Kouraev, AV, Legrésy, B and Remy, F (2006) Northern Novaya Zemlya outlet glaciers: 1990–2000 changes. LEGOS INTEGRAL Team, http://www.legos.obs-mip.fr/pdf/equipe/cryosphere-satellitaire/projets-spatiaux/northen-novaya-zembya-outlet
Lenaerts, JTM, Van Angelen, JH, Van den Broeke, MR, Gardner, AS, Wouters, B and Van Meijgaard, E (2013) Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys. Res. Lett., 40(5), 870874 (doi: 10.1002/grl.50214)
Loeng, H (1991) Features of the physical oceanographic conditions of the Barents Sea. Polar Res., 10(1), 518 (doi: 10.1111/j.1751–8369.1991.tb00630.x)
McFadden, EM, Howat, IM, Joughin, I, Smith, BE and Ahn, Y (2011) Changes in the dynamics of marine-terminating outlet glaciers in West Greenland (2000–2009). J. Geophys. Res., 116(F2), F02022 (doi: 10.1029/2010JF001757)
Meier, MF and Post, A (1987) Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058 (doi: 10.1029/JB092iB09p09051)
Meier, MF and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Miles, BWJ, Stokes, CR, Vieli, A and Cox, NJ (2013) Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature, 500(7464), 563566 (doi: 10.1038/na-ture12382)
Moholdt, G, Nuth, C, Hagen, JO and Kohler, J (2010) Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sens. Environ., 114(11), 27562767 (doi: 10.1016/j.rse.2010.06.008)
Moholdt, G, Wouters, B and Gardner, AS (2012) Recent mass changes of glaciers in the Russian High Arctic. Geophys. Res. Lett., 39(10), L10502 (doi: 10.1029/2012GL051466)
Moon, T and Joughin, I (2008) Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res., 113(F2), F02022 (doi: 10.1029/2007JF000927)
Moon, T, Joughin, I, Smith, B and Howat, I (2012) 21st-century evolution of Greenland outlet glacier velocities. Science, 336(6081), 576578 (doi: 10.1126/science.1219985)
Motyka, RJ, Hunter, L, Echelmeyer, KA and Connor, C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36, 5765 (doi: 10.3189/172756403781816374)
Motyka, RJ, Truffer, M, Fahnestock, M, Mortensen, J, Rysgaard, S and Howat, I (2011) Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Murray, T and 10 others (2010) Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes. J. Geophys. Res., 115(F3), F03026 (doi: 10.1029/2009JF001522)
Nick, FM, Vieli, A, Howat, IM and Joughin, I (2009) Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci., 2(2), 110114 (doi: 10.1038/ngeo394)
Nick, FM and 7 others (2013) Future sea-level rise from Greenland’s major outlet glaciers in a warming climate. Nature, 497(7448), 235238 (doi: 10.1038/nature12068)
Nuth, C, Moholdt, G, KohlerJ, Hagen, JO and Kaab, A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J. Geophys. Res., 115(F1), F01008 (doi: 10.1029/2008JF001223)
O’Neel, S, Pfeffer, WT, Krimmel, R and Meier, M (2005) Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat. J. Geophys. Res., 110(F3), F03012 (doi: 10.1029/2005JF000292)
Pavlov, VK and Pfirman, SL (1995) Hydrographic structure and variability of the Kara Sea: implications for pollutant distribution. Deep-Sea Res. I, 42(6), 13691390 (doi: 10.1016/0967-0645(95)00046–1)
Pfirman, SL, Bauch, D and Gammelsrod, T (1994) The northern Barents Sea: water mass distribution and modification. In Johannessen, OM, Muench, RD and Overland, JE eds. The polar oceans and their role in shaping the global environment: the Nansen Centennial volume. (Geophysical Monograph 85) American Geophysical Union, Washington, DC, 7794
Politova, NV, Shevchenko, VP and Zernova, VV (2012) Distribution, composition, and vertical fluxes of particulate matter in Bays of Novaya Zemlya Archipelago, Vaigach Island at the end of summer. Adv. Meteorol., Art. 259316 (doi: 10.1155/2012/259316)
Price, SF, Payne, AJ, Howat, IM and Smith, BE (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA (PNAS), 108(22), 89788983 (doi: 10.1073/pnas.1017313108)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971975 (doi: 10.1038/nature08471)
Radic, V, Bliss, A, Beedlow, AC, Hock, R, Miles, E and Cogley, JG (2013) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn. (doi: 10.1007/s00382–013-1719–7)
Raymond, C (1996) Shear margins in glaciers and ice sheets. J. Glaciol., 42(140), 90102
Reynolds, RW, Smith, TM, Liu, C, Chelton, DB, Casey, KS and Schlax, MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20(22), 54735496 (doi: 10.1175/2007JCLI1824.1)
Rignot, E, Box, JE, Burgess, E and Hanna, E (2008) Mass balance ofthe Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502 (doi: 10.1029/2008GL035417)
Rignot, E, Koppes, M and Velicogna, I (2010) Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geosci., 3(3), 141218 (doi: 10.1038/ngeo765)
Seale, A, Christoffersen, P, Mugford, RI and O’Leary, M (2011) Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res., 116(F3), F03013 (doi: 10.1029/2010JF001847)
Sharov, AI (2005) Studying changes of ice coasts in the European Arctic. Geo-Mar. Lett., 25 (2–3), 153166 (doi: 10.1007/s00367-004–0197–7)
Sharov, AI, Schöner, W and Pail, R (2009) Spatial features of glacier changes in the Barents-Kara sector. Geophys. Res. Abstr., 11,3046 (EGU2009–3046)
Sohn, HG, Jezek, KC and Van der Veen, CJ (1998) Jakobshavn Glacier, West Greenland: 30 years of spaceborne observations. Geophys. Res. Lett., 25(14), 26992702 (doi: 10.1029/98GL01973)
Sole, A, Payne, T, Bamber, J, Nienow, P and Krabill, W (2008) Testing hypotheses of the cause of peripheral thinning of the Greenland ice sheet: is land-terminating ice thinning at anomalously high rates? Cryos. Discuss., 2(4), 673710 (doi: 10.5194/tcd-2-673–2008)
Solomon, S and 7 others eds. (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Straneo, F and 7 others (2010) Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nature Geosci., 3(33), 182186 (doi: 10.1038/ngeo764)
Straneo, F and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4(5), 322327 (doi: 10.1038/ngeo1109)
Thomas, RH, Abdalati, W, Frederick, E, Krabill, WB, Manizade, S and Steffen, K (2003) Investigation of surface melting and dynamic thinning on Jakobshavn Isbra, Greenland. J. Glaciol., 49(165), 231239 (doi: 10.3189/172756503781830764)
Thomas, R, Frederick, E, Krabill, W, Manizade, S and Martin, C (2009) Recent changes on Greenland outlet glaciers. J. Glaciol., 55(189), 147162 (doi: 10.3189/002214309788608958)
Van den Broeke, M and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326(5955), 984986 (doi: 10.1126/science.1178176)
Vieli, A and Nick, FM (2011) Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: issues and implications. Surv. Geophys., 32(4–5), 437458 (doi: 10.1007/s10712–011–9132–4)
Vieli, A, Jania, J and Kolondra, L (2002) The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J. Glaciol., 48(163), 592600 (doi: 10.3189/172756502781831089)
Warren, CR and Glasser, NF (1992) Contrasting response of South Greenland glaciers to recent climatic change. Arct. Alp. Res., 24(2), 124132
Zeeberg, JJ and Forman, SL (2001) Changes in glacier extent on north Novaya Zemlya in the twentieth century. Holocene, 11(2), 161175 (doi: 10.1191/095968301676173261)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed