Skip to main content Accessibility help
×
Home

Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series

  • Alexandra L. Giese (a1) and Robert L. Hawley (a1)

Abstract

We have constrained the value for thermal diffusivity of near-surface snow and firn at Summit Station, Greenland, using a Fourier-type analysis applied to hourly temperature measurements collected from eight thermistors in a closed-off, air-filled borehole between May 2004 and July 2008. An implicit, finite-difference method suggests that a bulk diffusivity of ∼25 ± 3m2 a−1 is the most reasonable for representing macroscale heat transport in the top 30 m of firn and snow. This value represents an average diffusivity and, in a conduction-only model, generates temperature series whose phase shifts with depth most closely match those of the Summit borehole data (rms difference between measurements and model output is ∼6 days). This bulk value, derived numerically and corroborated analytically, is useful over large tracts of the Greenland ice sheet where density and microstructure are unknown.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Adams, EE and Sato, A (1993) Model for effective thermal conductivity of a dry snow cover composed of uniform ice spheres. Ann. Glaciol., 18, 300304
Albert, MR (1996) Modeling heat, mass, and species transport in polar firn. Ann. Glaciol., 23, 138143
Albert, MR and Hawley, RL (2000) Seasonal differences in surface energy exchange and accumulation at Summit, Greenland. Ann. Glaciol., 31(1), 387390 (doi: 10.3189/172756400781820129)
Albert, MR and Hawley, RL (2002) Seasonal changes in snow surface roughness characteristics at Summit, Greenland: implications for snow and firn ventilation. Ann. Glaciol., 35(1), 510514 (doi: 10.3189/172756402781816591)
Albert, MR and McGilvary, WR (1992) Thermal effects due to air flow and vapor transport in dry snow. J. Glaciol., 38(129), 273281
Albert, MR and Shultz, EF (2002) Snow and firn properties and air–snow transport processes at Summit, Greenland. Atmos. Environ., 36(15), 27892797 (doi: 10.1016/S1352-2310(02)00119-X)
Arons, EM and Colbeck, SC (1995) Geometry of heat and mass transfer in dry snow: a review of theory and experiment. Rev. Geophys., 33(4), 463493 (doi: 10.1029/95RG02073)
Arthern, RJ and Wingham, DJ (1998) The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climatic Change, 40(3–4), 605624 (doi: 10.1023/A:1005320713306)
Benson, CS (1962) Stratigraphic studies in the snow and firn of the Greenland ice sheet. SIPRE Res. Rep. 70
Brandt, RE and Warren, SG (1993) Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Glaciol., 39(131), 99110
Brandt, RE and Warren, SG (1997) Temperature measurements and heat transfer in near-surface snow at the South Pole. J. Glaciol., 43(144), 339351
Calonne, N, Flin, F, Morin, S, Lesaffre, B, du Roscoat, SR and Geindreau, C (2011) Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Res. Lett., 38(23), L23501 (doi: 10.1029/2011GL049234)
Carslaw, HS and Jaeger, JC (1959) Conduction of heat in solids. Oxford University Press, Oxford
Colbeck, SC (1989a) Air movement in snow due to windpumping. J. Glaciol, 35(120), 209213
Colbeck, SC (1989b) Snow-crystal growth with varying surface temperatures and radiation penetration. J. Glaciol., 35(119), 2329
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Academic Press, Amsterdam
Cullen, NJ, Mölg, T, Conway, J and Steffen, K (2014) Assessing the role of sublimation in the dry snow zone of the Greenland ice sheet in a warming world. J. Geophys. Res.: Atmos., 119(11), 65636577 (doi: 10.1002/2014JD021557)
Dadic, R, Schneebeli, M, Lehning, M, Hutterli, MA and Ohmura, A (2008) Impact of the microstructure of snow on its temperature: a model validation with measurements from Summit, Greenland. J. Geophys. Res., 113(D14), D14303 (doi: 10.1029/ 2007JD009562)
Hawley, RL, Morris, EM and McConnell, JR (2008) Rapid techniques for determining annual accumulation applied at Summit, Greenland. J. Glaciol., 54(188), 839845 (doi: 10.3189/ 002214308787779951)
Hooke, RLeB (2005) Principles of glacier mechanics. Cambridge University Press, Cambridge
Hutterli, MA, McConnell, JR, Chen, G, Bales, RC, Davis, DD and Lenschow, DH (2004) Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole. Atmos. Environ., 38(32), 54395450 (doi: 10.1016/j.atmosenv.2004.06.003)
Kaempfer, TU, Schneebeli, M and Sokratov, SA (2005) A microstructural approach to model heat transfer in snow. Geophys. Res. Lett., 32(21), L21503 (doi: 10.1029/2005GL023873)
Li, J, Wang, W and Zwally, HJ (2002) Interannual variations of shallow firn temperature at Greenland summit. Ann. Glaciol., 35(1), 368370 (doi: 10.3189/172756402781816933)
Li, J, Zwally, HJ and Comiso, JC (2007) Ice-sheet elevation changes caused by variations of the firn compaction rate induced by satellite-observed temperature variations. Ann Glaciol., 46, 813 (doi: 10.3189/172756407782871486)
Löwe, H, Riche, F and Schneebeli, M (2013) A general treatment of snow microstructure exemplified by an improved relation for thermal conductivity. Cryosphere, 7(5), 14731480 (doi: 10.5194/tc-7-1473-2013)
McConnell, JR, Bales, RC, Stewart, RW, Thompson, AM, Albert, MR and Ramos, R (1998) Physically based modeling of atmosphere-to-snow-to-firn transfer of H2O2 at South Pole. J. Geophys. Res., 103(D9), 10 56110 570 (doi: 10.1029/98JD00460)
Mellor, M (1977) Engineering properties of snow. J. Glaciol., 19(81), 1566
Morin, S, Domine, F, Arnaud, G, and Picard, L (2010) In-situ monitoring of the time evolution of the effective thermal conductivity of snow. Cold Reg. Sci. Technol., 64(2), 7380 (doi: 10.1016/j.coldregions.2010.02.008)
Oldroyd, HJ, Higgins, CW, Huwald, H, Selker, JS and Parlange, MB (2012) Thermal diffusivity of seasonal snow determined from temperature profiles. Adv. Water Res., 55, 121130 (doi: 10.1016/j.advwatres.2012.06.011)
Pitman, D and Zuckerman, B (1967) Effective thermal conductivity of snow at −88°, −27°, and −5°C. J. Appl. Phys., 38, 26982699
Riche, F and Schneebeli, M (2010) Microstructural change around a needle probe to measure thermal conductivity of snow. J. Glaciol., 56(199), 871876 (doi: 10.3189/ 002214310794457164)
Riche, F and Schneebeli, M (2013) Thermal conductivity of snow measured by three independent methods and anisotropy considerations. Cryosphere, 7(1), 217227 (doi: 10.5194/tc-7-217-2013)
Sergienko, OV, MacAyeal, DR and Thom, JE (2008) Reconstruction of snow/firn thermal diffusivities from observed temperature variation: application to iceberg C16, Ross Sea, Antarctica. Ann. Glaciol., 49, 9195 (doi: 10.3189/172756408787814906)
Shertzer, RH and Adams, EE (2011) Anisotropic thermal conductivity model for dry snow. Cold Reg. Sci. Technol., 69(2), 122128 (doi: 10.1016/j.coldregions.2011.09.005)
Steffen, K and Box, J (2001) Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106(D24), 33 95133 964 (doi: 10.1029/2001JD900161)
Sturm, M and Benson, C (2004) Scales of spatial heterogeneity for perennial and seasonal snow layers. Ann Glaciol., 38(1), 253260 (doi: 10.3189/172756404781815112)
Sturm, M and Johnson, JB (1991) Natural convection in the subarctic snow cover. J. Geophys. Res., 96(B7), 11 65711 671 (doi: 10.1029/91JB00895)
Sturm, M, Holmgren, J, König, M and Morris, K (1997) The thermal conductivity of seasonal snow. J. Glaciol., 43(143), 2641
Yen, Y (1981) Review of thermal properties of snow, ice and sea ice. CRREL Rep. 81-10

Keywords

Related content

Powered by UNSILO

Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series

  • Alexandra L. Giese (a1) and Robert L. Hawley (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.