Skip to main content

Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar


The phase-sensitive radio-echo sounder (pRES) is a powerful new instrument that can measure the depth of internal layers and the glacier bed to millimetre accuracy. We use a stationary 16-antenna pRES array on Store Glacier in West Greenland to measure the three-dimensional orientation of dipping internal reflectors, extending the capabilities of pRES beyond conventional depth sounding. This novel technique portrays the effectiveness of pRES in deriving the orientation of dipping internal layers that may complement profiles obtained through other geophysical surveying methods. Deriving ice vertical strain rates from changes in layer depth as measured by a sequence of pRES observations assumes that the internal reflections come from vertically beneath the antenna. By revealing the orientation of internal reflectors and the potential deviation from nadir of their associated reflections, the use of an antenna array can correct this assumption. While the array configuration was able to resolve the geometry of englacial layers, the same configuration could not be used to accurately image the glacier bed. Here, we use simulations of the performance of different array geometries to identify configurations that can be tailored to study different types of basal geometry for future deployments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: T. J. Young <>
Hide All
Arcone, SA and Delaney, AJ (2000) GPR images of hidden crevasses in Antarctica. Eighth Int. Conf. Ground Penetrating Radar, 4084, 760765 (doi: 10.1117/12.383512)
Bamber, JL and 10 others (2013) A new bed elevation dataset for Greenland. Cryosphere, 7, 499510 (doi: 10.5194/tc-7-499-2013)
Bingham, RG and 9 others (2015) Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. J. Geophys. Res. Earth Surf., 120(4), 656670 (doi: 10.1002/2014JF003291)
Box, JE and Decker, DT (2011) Greenland marine-terminating glacier area changes: 2000–2010. Ann. Glaciol., 52(59), 9198 (doi: 10.3189/172756411799096312)
Brennan, PV, Lok, LB, Nicholls, KW and Corr, HFJ (2014) Phase-sensitive FMCW radar system for high-precision Antarctic ice shelf profile monitoring. IET Radar, Sonar and Navigation, 8(7), 776786 (doi: 10.1049/iet-rsn.2013.0053)
Brennan, PV, Rahman, S and Lok, LB 2015) Range migration compensation in static digital-beamforming-on-receive radar. IET Radar, Sonar Navigation, 9(9), 13231329 (doi: 10.1049/iet-rsn.2014.0355)
Cavitte, MGP and 7 others (2016) Deep radiostratigraphy of the East Antarctic plateau: connecting the Dome C and Vostok ice core sites. J. Glaciol., 62(232), 323334 (doi: 10.1017/jog.2016.11)
Christianson, K and 6 others (2016) Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. J. Geophys. Res. Earth Surf., 121(11), 19541983 (doi: 10.1002/2015JF003806)
Colgan, WT and 6 others (2016) Glacier crevasses: observations, models, and mass balance implications. Rev. Geophys., 54, 119161 (doi: 10.1002/2015RG000504)
Corr, HFJ, Jenkins, A, Nicholls, KW and Doake, CSM (2002) Precise measurement of changes in ice-shelf thickness by phase-sensitive radar to determine basal melt rates. Geophys. Res. Lett., 29(8), 14 (doi: 10.1029/2001GL014618)
Dahl-Jensen, D and 9 others (1997) A search in North Greenland for a new ice-core drill site. J. Glaciol., 43(144), 300306 (doi: 10.3189/S0022143000003245)
Dahl-Jensen, D, Gundestrup, N, Gogineni, P and Miller, H (2003) Basal melt at North GRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol., 37(1), 207212 (doi: 10.3189/172756403781815492)
Doyle, SH and 7 others (2018) Physical conditions of fast glacier flow: 1. measurements from boreholes drilled to the bed of Store Glacier, West Greenland. J. Geophys. Res. Earth Surf., 123(2), 324348 (doi: 10.1002/2017JF004529)
Drewry, DJ and Meldrum, DT (1978) Antarctic airborne radio echo sounding, 1977–78. Polar Record, 19(120), 267 (doi: 10.1017/S0032247400018271)
Drews, R and 7 others (2009) Layer disturbances and the radio-echo free zone in ice sheets. Cryosphere, 3, 195203
Dutrieux, P and 6 others (2014) Basal terraces on melting ice shelves. Geophys. Res. Lett., 41(15), 55065513 (doi: 10.1002/2014GL060618)
Evans, S and Smith, BME (1969) A radio echo equipment for depth sounding in polar ice sheets. J. Phys. E: Sci. Instrum., 2(2), 131136 (doi: 10.1088/0022-3735/2/2/302)
Harrison, CH, 1973) Radio echo sounding of horizontal layers in ice. J. Glaciol., 12(66), 383397
Hindmarsh, RCA, Leysinger Vieli, GJMC, Raymond, MJ and Gudmundsson, GH (2006) Draping or overriding: the effect of horizontal stress gradients on internal layer architecture in ice sheets. J. Geophys. Res. Earth Surf., 111(2), F02018 (doi: 10.1029/2005JF000309)
Hofstede, C and 7 others (2018) Physical conditions of fast glacier flow: 2. variable extent of anisotropic ice and soft basal sediment from seismic reflection data acquired on Store Glacier, West Greenland. J. Geophys. Res. Earth Surf., 123(2), 349362 (doi: 10.1002/2017JF004297)
Holschuh, N, Christianson, K and Anandakrishnan, S (2014) Power loss in dipping internal reflectors, imaged using ice-penetrating radar. Ann. Glaciol., 55(67), 4956 (doi: 10.3189/2014AoG67A005)
Holschuh, N, Parizek, BR, Alley, RB, Anandakrishnan, S (2017) Decoding ice sheet behavior using englacial layer slopes. Geophys. Res. Lett., 44(11), 120 (doi: 10.1002/2017GL073417)
Howat, IM, Box, JE, Ahn, Y, Herrington, A, McFadden, EM (2010) Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)
Howat, IM, Negrete, A and Smith, BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)
Huang, Y and 5 others (2011) FMCW based MIMO imaging radar for maritime navigation. Prog. Electromagn. Res., 115, 327342
Hubbard, BP, Siegert, MJ and McCarroll, D (2000) Spectral roughness of glaciated bedrock geomorphic surfaces: implications for glacier sliding. J. Geophys. Res., 105(B9), 21295 (doi: 10.1029/2000JB900162)
Jenkins, A, Corr, HFJ, Nicholls, KW, Stewart, CL and Doake, CSM (2006) Interactions between ice and ocean observed with phase-sensitive radar near an Antarctic ice-shelf grounding line. J. Glaciol., 52(178), 325346 (doi: 10.3189/172756506781828502)
Jezek, K and 6 others (2011) Radar images of the bed of the Greenland Ice Sheet. Geophys. Res. Lett., 38(1), 15 (doi: 10.1029/2010GL045519)
Kanagaratnam, P, Gogineni, SP, Ramasami, V and Braaten, D (2004) A wideband radar for high-resolution mapping of near-surface internal layers in glacial ice. IEEE Trans. Geosci. Remote Sens., 42(3), 483490 (doi: 10.1109/TGRS.2004.823451)
Keisling, BA and 8 others (2014) Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the northeast Greenland Ice Stream. Ann. Glaciol., 55(67), 127137 (doi: 10.3189/2014AoG67A090)
Kennett, MI 1989) A possible radio-echo method of locating englacial and subglacial waterways. Ann. Glaciol., 13, 135139
King, EC, Hindmarsh, RCA and Stokes, CR (2009) Formation of mega-scale glacial lineations observed beneath a West Antarctic Ice Stream. Nat. Geosci., 2, 585588 (doi: 10.1038/NGEO581)
Kingslake, J and 9 others (2014) Full-depth englacial vertical ice sheet velocities measured using phase-sensitive radar. J. Geophys. Res. Earth Surf., 119(12), 26042618 (doi: 10.1002/2014JF003275)
Kingslake, J, Martín, C, Arthern, RJ, Corr, HFJ and King, EC (2016) Ice-flow reorganization in West Antarctica 2.5 kyr ago dated using radar-derived englacial flow velocities. Geophys. Res. Lett., 43(17), 91039112 (doi: 10.1002/2016GL070278)
Li, J, Stoica, P and Zheng, X (2008) Signal synthesis and receiver design for mimo radar imaging. IEEE Trans. Signal. Process., 56(8), 39593968 (doi: 10.1109/TSP.2008.923197)
Lok, LB, Brennan, PV, Ash, M and Nicholls, KW (2015) Autonomous phase-sensitive radio echo sounder for monitoring and imaging Antarctic ice shelves. 8th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2015, 14 (doi: 10.1109/IWAGPR.2015.7292636)
Lythe, M, Vaughan, DG and the BEDMAP Consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 1133511351 (doi: 10.1029/2000JB900449)
MacGregor, JA and 9 others (2015) Radiostratigraphy and age structure of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf., 120, 212241 (doi: 10.1002/2014JF003215)
Marsh, OJ, Fricker, HA, Siegfried, MR, Christianson, K (2016) High basal melt rates initiate a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophys. Res. Lett., 43(1), 250255 (doi: 10.1002/2015GL066612)
Morlighem, M and 6 others (2016) Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. Geophys. Res. Lett., 43(6), 26592666 (doi: 10.1002/2016GL067695)
Morlighem, M and 31 others (2017) Bedmachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett., 44(21), 1105111061 (doi: 10.1002/2017GL074954)
Ng, F and Conway, HB (2004) Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology, 321(4), 481484 (doi: 10.1130/G20317.1)
Nicholls, KW and 5 others (2015) A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol., 61(230), 10791087 (doi: 10.3189/2015JoG15J073)
Paden, JD, Akins, T, Dunson, D, Allen, C and Gogineni, PS (2010) Ice-sheet bed 3-D tomography. J. Glaciol., 56(195), 311 (doi: 10.3189/002214310791190811)
Plewes, LA and Hubbard, B (2001) A review of the use of radio-echo sounding in glaciology. Prog. Phys. Geogr., 25(2), 203236 (doi: 10.1177/030913330102500203)
Rignot, E and Mouginot, J (2012) Ice flow in Greenland for the international polar year 2008–2009. Geophys. Res. Lett., 39(11), 17 (doi: 10.1029/2012GL051634)
Rignot, E, Mouginot, J, Larsen, CF, Gim, Y and Kirchner, D (2013) Low-frequency radar sounding of temperate ice masses in Southern Alaska. Geophys. Res. Lett., 40(20), 53995405 (doi: 10.1002/2013GL057452)
Robin, GdQ, Drewry, DJ and Meldrum, DT (1977) International studies of ice sheet and bedrock. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 279, 185196 (doi: 10.1098/rstb.2009.0030)
Ryser, C and 7 others (2014) Caterpillar-like ice motion in the ablation zone of the Greenland Ice Sheet. J. Geophys. Res. Earth Surf., 119, 22582271 (doi: 10.1002/2013JF003067)
Schroeder, DM, Blankenship, DD, Raney, RK and Grima, C (2015) Estimating subglacial water geometry using radar bed echo specularity: application to Thwaites Glacier, West Antarctica. IEEE Geosci. Remote Sens. Lett., 12(3), 443447 (doi: 10.1109/LGRS.2014.2337878)
Siegert, MJ, Payne, AJ and Joughin, I (2003) Spatial stability of Ice Stream D and its tributaries, West Antarctica, revealed by radio-echo sounding and interferometry. Ann. Glaciol., 37(1), 377382 (doi: 10.3189/172756403781816022)
Sime, LC, Karlsson, NB, Paden, JD and Prasad Gogineni, S (2014) Isochronous information in a Greenland ice sheet radio echo sounding data set. Geophys. Res. Lett., 41(5), 15931599 (doi: 10.1002/2013GL057928)
Smith, BME and Evans, S (1972) Radio echo sounding: absorption and scattering by water inclusion and ice lenses. J. Glaciol., 11(61), 133146
Todd, JA and Christoffersen, P (2014) Are seasonal calving dynamics forced by buttressing from ice mélange or undercutting by melting? Outcomes from full-Stokes simulations of Store Glacier, West Greenland. Cryosphere, 8, 23532365 (doi: 10.5194/tc-8-2353-2014)
Visser, HJ (2005) Array and Phased Array Basics. Chichester, United Kingdom: Wiley-Blackwell, 1st ed.
Walford, MER and Harper, MFL (1981) The detailed study of glacier beds using radio-echo techniques. Geophys. J. R. Astron. Soc., 67, 487514 (doi: 10.5100/jje.9.113)
Walford, MER and Kennett, MI (1989) A synthetic-aperture radio-echo experiment at Storglaciären, Sweden. J. Glaciol., 35(119), 4347
Watts, RD and England, AW (1976) Radio-echo sounding of temperate glaciers: ice properties and sounder design criteria. J. Glaciol., 17(75), 3948
Weidick, A (1995) Satellite image atlas of glaciers of the World – Greenland. Technical report, U.S. Geological Survey
Winter, K and 6 others (2015) Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics. J. Geophys. Res. Earth Surf., 120(9), 16111625 (doi: 10.1002/2014JF003432)
Wu, X and 5 others (2011) Ice sheet bed mapping with airborne SAR tomography. IEEE Trans. Geosci. Remote Sens., 49(10), 37913802 (doi: 10.1109/TGRS.2011.2132802)
Yamaguchi, Y, Mitsumoto, M, Kawakami, A, Sengoku, M and Abe, T (1992) Detection of objects by synthetic aperture FM-CW radar. Electron. Commun. Jpn., Part 1, 75(3), 8594
Young, DA, Schroeder, DM, Blankenship, DD, Kempf, SD and Quartini, E (2016) The distribution of basal water between Antarctic subglacial lakes from radar sounding. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 374(2059), 20140297 (doi: 10.1098/rsta.2014.0297)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Young et al. supplementary material
Young et al. supplementary material 1

 PDF (20.2 MB)
20.2 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed