Skip to main content
×
Home

The response of fabric variations to simple shear and migration recrystallization

  • Joseph H. Kennedy (a1) (a2) and Erin C. Pettit (a3)
Abstract
Abstract

The observable microstructures in ice are the result of many dynamic and competing processes. These processes are influenced by climate variables in the firn. Layers deposited in different climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may ‘remember’ these past climate regimes. We model the evolution of fabric variations below the firn–ice transition and show that the addition of shear to compressive-stress regimes preserves the modeled fabric variations longer than compression-only regimes, because shear drives a positive feedback between crystal rotation and deformation. Even without shear, the modeled ice retains memory of the fabric variation for 200 ka in typical polar ice-sheet conditions. Our model shows that temperature affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution profile when comparing results straddling the thermal-activation-energy threshold (∼−10°C). Even at high temperatures, migration recrystallization does not eliminate the modeled fabric’s memory under most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled fabric’s memory more quickly than low levels of nearest-neighbor interactions. Ultimately, our model predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of conditions found in polar ice sheets.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The response of fabric variations to simple shear and migration recrystallization
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The response of fabric variations to simple shear and migration recrystallization
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The response of fabric variations to simple shear and migration recrystallization
      Available formats
      ×
Copyright
Corresponding author
Joseph H. Kennedy <kennedyjh@ornl.gov>
References
Hide All
Adams EE and Miller DA (2003) Ice crystals grown from vapor onto an orientated substrate: application to snow depth-hoar development and gas inclusions in lake ice. J. Glaciol., 49(164), 812 (doi: 10.3189/172756503781830953)
Alley RB (1992) Flow-law hypotheses for ice-sheet modeling. J. Glaciol.. 38(129), 245256
Alley RB, Perepezko JH and Bentley CR (1986) Grain growth in polar ice: I. Theory. J. Glaciol., 32(112), 415424
Alley RB, Saltzman ES, Cuffey KM and Fitzpatrick JJ (1990) Summertime formation of depth hoar in central Greenland. Geophys. Res. Lett., 17(13), 23932396 (doi: 10.1029/GL017i013p02393)
Alley RB, Gow AJ and Meese DA (1995) Mapping c-axis fabrics to study physical processes in ice. J. Glaciol., 41(137), 197203
Arnaud L, Weiss J, Gay M and Duval P (2000) Shallow-ice microstructure at Dome Concordia, Antarctica. Ann. Glaciol., 30, 812 (doi: 10.3189/172756400781820813)
Benson CS (1962) Stratigraphic studies in the snow and firn of the Greenland ice sheet. SIPRE Res. Rep. 70
Budd WF and Jacka TH (1989) A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16(2), 107144 (doi: 10.1016/0165-232X(89)90014-1)
Carns R, Waddington ED, Pettit EC and Warren SG (2010) A model of grain growth and crystal fabric in polar snow and firn. AGU Fall Meeting Abstracts, C33D–0572
Castelnau O, Duval P, Lebensohn RA and Canova GR (1996) Viscoplastic modeling of texture development in polycrystalline ice with a self-consistent approach: comparison with bound estimates. J. Geophys. Res., 101(B6), 13 85113 868 (doi: 10.1029/96JB00412)
Colbeck SC (1983) Theory of metamorphism of dry snow. J. Geophys. Res., 88(C9), 54755482 (doi: 10.1029/JC088iC09p05475)
Cuffey KM and Paterson WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
De La Chapelle S, Castelnau O, Lipenkov V and Duval P (1998) Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophys. Res., 103(B3), 50915105 (doi: 10.1029/97JB02621)
DiPrinzio CL, Wilen LA, Alley RB, Fitzpatrick JJ, Spencer MK and Gow AJ (2005) Fabric and texture at Siple Dome, Antarctica. J. Glaciol., 51(173), 281290 (doi: 10.3189/172756505781829359)
Durand G, Gagliardini O, Thorsteinsson T, Svensson A, Kipfstuhl S and Dahl-Jensen D (2006a) Ice microstructure and fabric: an up-to-date approach for measuring textures. J. Glaciol., 52(179), 619630 (doi: 10.3189/172756506781828377)
Durand G and 10 others (2006b) Effect of impurities on grain growth in cold ice sheets. J. Geophys. Res., 111(F1), F01015 (doi: 10.1029/2005JF000320)
Durand G and 8 others (2007) Change in ice rheology during climate variations: implications for ice flow modelling and dating of the EPICA Dome C core. Climate Past, 3(1), 155167 (doi: 10.5194/cp-3-155-2007)
Durand G and 7 others (2009) Evolution of the texture along the EPICA Dome C ice core. Low Temp. Sci., 68(Suppl.), 91105
Duval P and Castelnau O (1995) Dynamic recrystallization of ice in polar ice sheets. J. Phys. IV [Paris], 5(C3), 197205 (doi: 10.1051/jp4:1995317)
Faria SH and 6 others (2009) The multiscale structure of Antarctica. Part I: inland ice. Low Temp. Sci., 68(Suppl.), 3959 (doi: 10013/epic.35759.d001)
Faria SH, Weikusat I and Azuma N (2014a) The microstructure of polar ice. Part I: Highlights from ice core research. J. Struct. Geol., 61, 220 (doi: 10.1016/j.jsg.2013.09.010)
Faria SH, Weikusat I and Azuma N (2014b) The microstructure of polar ice. Part II: State of the art. J. Struct. Geol., 61, 2149 (doi: 10.1016/j.jsg.2013.11.003)
Fujita S, Okuyama J, Hori A and Hondoh T (2009) Metamorphism of stratified firn at Dome Fuji, Antarctica: a mechanism for local insolation modulation of gas transport conditions during bubble close off. J. Geophys. Res., 114(F3), F03023, 1–21 (doi: 10.1029/2008JF001143)
Gagliardini O, Durand G and Wang Y (2004) Grain area as a statistical weight for polycrystal constituents. J. Glaciol., 50(168), 8795 (doi: 10.3189/172756504781830349)
Glen JW (1955) The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A, 228(1175), 519538 (doi: 10.1098/rspa.1955.0066)
Gödert G and Hutter K (1998) Induced anisotropy in large ice shields: theory and its homogenization. Contin. Mech. Thermodyn., 10(5), 293318
Gow AJ and Meese D (2007) Physical properties, crystalline textures and c-axis fabrics of the Siple Dome (Antarctica) ice core. J. Glaciol., 53(183), 573584 (doi: 10.3189/002214307784409252)
Gow AJ and 6 others (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice core : a review. J. Geophys. Res., 102(C12), 26 55926 575 (doi: 10.1029/97JC00165)
Gusmeroli A, Pettit EC, Kennedy JH and Ritz C (2012) The crystalline fabric of glacial ice from full-waveform borehole sonic logging. J. Geophys. Res., 117(F3), F03021, 1–13 (doi: 10.1029/2012JF002343)
Jacka TH and Jun L (1994) The steady-state crystal size of deforming ice. Ann. Glaciol., 20, 1318
Kamb WB (1959) Ice petrofabric observation from Blue Glacier, Washington, in relation to theory and experiment. J. Geophys. Res., 64(11), 18911909 (doi: 10.1029/JZ064i011p01891)
Kennedy JH, Pettit EC and Di Prinzio CL (2013) The evolution of crystal fabric in ice sheets and its link to climate history. J. Glaciol., 59(214), 357373 (doi: 10.3189/2013JoG12J159)
Ketcham WM and Hobbs PV (1969) An experimental determination of the surface energies of ice. Philos. Mag., 19(162), 11611173 (doi: 10.1080/14786436908228641)
Kipfstuhl S and 6 others (2006) Microstructure mapping: a new method for imaging deformation-induced microstructural features of ice on the grain scale. J. Glaciol., 52(178), 398406 (doi: 10.3189/172756506781828647)
Kipfstuhl S and 8 others (2009) Evidence of dynamic recrystallization in polar firn. J. Geophys. Res., 114(B5), 110 (doi: 10.1029/2008JB005583)
Miguel M-C, Vespignani A, Zapperi S, Weiss J and Grasso J-R (2001) Intermittent dislocation flow in viscoplastic deformation. Nature, 410(6829), 667671 (doi: 10.1038/35070524)
Mohamed G and Bacroix B (2000) Role of stored energy in static recrystallization of cold rolled copper single and multicrystals. Acta Mater., 48(13), 32953302
Montagnat M and Duval P (2000) Rate controlling processes in the creep of polar ice: influence of grain boundary migration associated with recrystallization. Earth Planet. Sci. Lett., 183, 179186 (doi: 10.1016/S0012-821X(00)00262-4)
Montagnat M, Durand G and Duval P (2009) Recrystallization processes in granular ice. Low Temp. Sci., 68(Suppl.), 8190
Montagnat M and 6 others (2012) Measurements and numerical simulation of fabric evolution along the Talos Dome ice core, Antarctica. Earth Planet. Sci. Lett., 357–358, 168178 (doi: 10.1016/j.epsl.2012.09.025)
Montagnat M and 11 others (2014) Multiscale modeling of ice deformation behavior. J. Struct. Geol., 68, 78108 (doi: 10.1016/j.jsg.2013.05.002)
Nelson J and Knight C (1998) Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55(8), 14521465 (doi: 10. 1175/1520-0469(1998)055%3C1452:SCHCEB%3E2.0.CO;2)
Obbard R, Baker I and Sieg K (2006) Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol., 52(179), 546557 (doi: 10.3189/172756506781828458)
Paterson WSB (1991) Why ice-age ice is sometimes ‘soft’. Cold Reg. Sci. Technol., 20, 7598 (doi: 10.1016/0165-232X(91)90058-O)
Pettit EC and Waddington ED (2003) Ice flow at low deviatoric stress. J. Glaciol., 49(166), 359369 (doi: 10.3189/172756503781830584)
Pettit EC, Thorsteinsson T, Jacobson PH and Waddington ED (2007) The role of crystal fabric in flow near an ice divide. J. Glaciol., 53(181), 277288 (doi: 10.3189/172756507782202766)
Pettit EC and 6 others (2011) The crossover stress, anisotropy and the flow law at Siple Dome, West Antarctica. J. Glaciol., 57(201), 3952 (doi: 10.3189/002214311795306619)
Shimizu I (2008) Theories and applicability of grain size piezometers: the role of dynamic recrystallization mechanisms. J. Struct. Geol., 30(7), 899917 (doi: 10.1016/j.jsg.2008.03.004)
Thorsteinsson T (2001) An analytical approach to deformation of anisotropic ice-crystal aggregates. J. Glaciol., 47(158), 507516 (doi: 10.3189/172756501781832124)
Thorsteinsson T (2002) Fabric development with nearest-neighbor interaction and dynamic recrystallization. J. Geophys. Res., 107(B1), 113 (doi: 10.1029/2001JB000244)
Thorsteinsson T, Waddington ED, Taylor KC, Alley RB and Blankenship DD (1999) Strain rate enhancement at Dye 3, Greenland. J. Glaciol., 45(150), 338345 (doi: 10.3189/002214399793377185)
Wang Y, Kipfstuhl S, Azuma N, Thorsteinsson T and Miller H (2003) Ice-fabrics study in the upper 1500 m of the Dome C (East Antarctica) deep ice core. Ann. Glaciol., 37(1), 97104 (doi: 10.3189/172756403781816031)
Weikusat I, Miyamoto A, Faria H, Kipfstuhl S, Azuma N and Hondoh T (2011) Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. Glaciol., 57(201), 111120 (doi: 10.3189/002214311795306628)
Wilson CJL, Peternell M, Piazolo S and Luzin V (2014) Microstructure and fabric development in ice: lessons learned from in situ experiments and implications for understanding rock evolution. J. Struct. Geol., 61, 5077 (doi: 10.1016/j.jsg.2013.05.006)
Woodcock NH (1977) Specification of fabric shapes using an eigenvalue method. J. Struct. Geol., 88, 12311236 (doi: 10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 16 *
Loading metrics...

Abstract views

Total abstract views: 12 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 12th December 2017. This data will be updated every 24 hours.