Skip to main content
×
×
Home

Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)

  • J. Oerlemans (a1), R.H. Giesen (a1) and M.R. Van Den Broeke (a1)
Abstract

The automatic weather station (AWS) on the snout of the Vadret da Morteratsch, Switzerland, has delivered a unique 12 year meteorological dataset from the ablation zone of a temperate glacier. This dataset can be used to study multi-annual trends in the character of the surface energy budget. Since 2003 there has been a substantial darkening of the glacier tongue due to the accumulation of mineral and biogenic dust. The typical surface albedo in summer has dropped from 0.32 to 0.15. We have analysed the implications of the lowered albedo for the energy balance and the annual ablation. For the 4 year period 2003–06, the decreased albedo caused an additional removal of about 3.5 m of ice. Calculations with an energy-balance model show that the same increase in ablation is obtained by keeping the ice albedo fixed to 0.32 and increasing the air temperature by 1.7 K. Our analysis confirms that for retreating glaciers the deposition of dust from exposed side moraines on the glacier surface constitutes an important feedback mechanism. The mineral dust stimulates the growth of algae, lowers the surface albedo, enhances the melt rates, and thereby facilitates the further retreat of the glacier snout.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland)
      Available formats
      ×
Copyright
References
Hide All
Adhikary, S., Nakawo, M., Seko, K. and Shakya, B.. 2000. Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. IAHS Publ. 264 (Symposium at Seattle 2000 – Debris-Covered Glaciers), 4352.
Andreas, E.L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteorol., 38(1–2), 159184.
Ångström, A. 1933. On the dependence of ablation on air temperature, radiation and wind. Geogr. Ann., 15(4), 264271.
Black, E., Blackburn, M., Harrison, G., Hoskins, B. and Methven, J.. 2004. Factors contributing to the summer 2003 European heatwave. Weather, 59(8), 217223.
Brock, B.W. 2004. An analysis of short-term albedo variations at Haut Glacier d’Arolla, Switzerland. Geogr. Ann., Ser. A, 86A(1), 5365.
Brock, B.W., Willis, I.C. and Sharp, M.J.. 2000. Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland. J. Glaciol., 46(155), 675688.
Bundesamt für Landestopographie. 1979. Landeskarte der Schweiz, Blatt 1277, Piz Bernina. 1:25.000. Wabern, Bundesamt für Landestopographie.
Denby, B. and Greuell, W.. 2000. The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445452.
Fujita, K. 2007. Effect of dust event timing on glacier runoff: sensitivity analysis for a Tibetan glacier. Hydrol. Process., 21(21), 28922896.
Giesen, R.H., van den Broeke, M.R., Oerlemans, J. and Andreassen, L.M.. 2008. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J. Geophys. Res., 113(D21), D21111. (10.1029/2008JD010390.)
Klok, E.J. and Oerlemans, J.. 2002. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. J. Glaciol., 48(163), 505518.
Klok, E.J., Greuell, W. and Oerlemans, J.. 2003. Temporal and spatial variation of the surface albedo of Morteratschgletscher, Switzerland, as derived from 12 Landsat images. J. Glaciol., 49(167), 491502.
Kuhn, M. 1989. The response of the equilibrium line altitude to climatic fluctuations: theory and observations. In Oerlemans, J., ed. Glacier fluctuations and climatic change. Dordrecht, etc., Kluwer Academic Publishers, 407417.
Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. and Wanner, H.. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303(5663), 14991503.
Mihalcea, C., Mayer, C., Diolaiuti, G., Lambrecht, A., Smiraglia, C. and Tartari, G.. 2006. Ice ablation and meteorological conditions on the debris-covered area of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol., 43, 292300.
Nakawo, M. and Young, G.J.. 1982. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. J. Glaciol., 28(98), 2934.
Oerlemans, J. 2000. Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. J. Glaciol., 46(155), 571579.
Oerlemans, J. 2001. Glaciers and climate change. Lisse, etc., A.A. Balkema.
Oerlemans, J. and Klok, E.J.. 2002. Energy balance of a glacier surface: analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arct. Antarct. Alp. Res., 34(4), 477485.
Oerlemans, J. and Klok, E.J.. 2004. Effect of summer snowfall on glacier mass balance. Ann. Glaciol., 38, 97100.
Oerlemans, J. and Knap, W.H.. 1998. A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J. Glaciol., 44(147), 231238.
Ohmura, A., Kasser, P. and Funk, M.. 1992. Climate at the equilibrium line of glaciers. J. Glaciol., 38(130), 397411.
Paul, F., Machguth, H. and Kääb, A.. 2005. On the impact of glacier albedo under conditions of extreme glacier melt: the summer of 2003 in the Alps. EARSeL eProc., 4(2), 139149.
Paul, F., Kääb, A. and Haeberli, W.. 2007. Recent glacier changes in the Alps observed from satellite: consequences for future monitoring strategies. Global Planet. Change, 56(1–2), 111122.
Schär, C. and 6 others. 2004. The role of increasing temperature variability in European summer heatwaves. Nature, 6972(427), 332336.
Sodemann, H., Palmer, A.S., Schwierz, C., Schwikowski, M. and Wernli, H.. 2006. The transport history of two Saharan dust events archived in an Alpine ice core. Atmos. Chem. Phys., 6(3), 667688.
Takeuchi, N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Ann. Glaciol., 34, 409414.
Takeuchi, N., Kohshima, S., Shiraiwa, T. and Kubota, K.. 2001. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield. Bull. Glaciol. Res. 18, 6569.
Van den Broeke, M.R., Reijmer, C.H., van As, D., van de Wal, R.S.W. and Oerlemans, J.. 2005. Seasonal cycles of Antarctic surface energy balance from automatic weather stations. Ann. Glaciol., 41, 131139.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed