Skip to main content
×
×
Home

Review of the status and mass changes of Himalayan-Karakoram glaciers

  • MOHD FAROOQ AZAM (a1) (a2), PATRICK WAGNON (a3) (a4), ETIENNE BERTHIER (a5), CHRISTIAN VINCENT (a3), KOJI FUJITA (a6) and JEFFREY S. KARGEL (a7)...
Abstract

We present a comprehensive review of the status and changes in glacier length (since the 1850s), area and mass (since the 1960s) along the Himalayan-Karakoram (HK) region and their climate-change context. A quantitative reliability classification of the field-based mass-balance series is developed. Glaciological mass balances agree better with remotely sensed balances when we make an objective, systematic exclusion of likely flawed mass-balance series. The Himalayan mean glaciological mass budget was similar to the global average until 2000, and likely less negative after 2000. Mass wastage in the Himalaya resulted in increasing debris cover, the growth of glacial lakes and possibly decreasing ice velocities. Geodetic measurements indicate nearly balanced mass budgets for Karakoram glaciers since the 1970s, consistent with the unchanged extent of supraglacial debris-cover. Himalayan glaciers seem to be sensitive to precipitation partly through the albedo feedback on the short-wave radiation balance. Melt contributions from HK glaciers should increase until 2050 and then decrease, though a wide range of present-day area and volume estimates propagates large uncertainties in the future runoff. This review reflects an increasing understanding of HK glaciers and highlights the remaining challenges.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Review of the status and mass changes of Himalayan-Karakoram glaciers
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Review of the status and mass changes of Himalayan-Karakoram glaciers
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Review of the status and mass changes of Himalayan-Karakoram glaciers
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Mohd Farooq Azam <farooqaman@yahoo.co.in>
References
Hide All
Ageta, Y and Higuchi, K (1984) Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya. Geogr. Ann. Ser. Phys. Geogr., 66, 249255
Andreassen, LM, Van Den Broeke, MR, Giesen, RH and Oerlemans, J (2008) A 5 year record of surface energy and mass balance from the ablation zone of Storbreen, Norway. J. Glaciol., 54(185), 245258
Azam, MF and 9 others (2012) From balance to imbalance: a shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. J. Glaciol., 58(208), 315324
Azam, MF and 5 others (2014a) Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Ann. Glaciol., 55(66), 6980
Azam, MF and 6 others (2014b) Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 8(6), 21952217
Azam, MF and 10 others (2016) Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India. Ann. Glaciol., 57, 328338
Bajracharya, SR and Mool, P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol., 50(53), 8186
Banerjee, A (2017) Brief communication: thinning of debris-covered and debris-free glaciers in a warming climate. Cryosphere, 11(1), 133138
Banerjee, A and Shankar, R (2013) On the response of Himalayan glaciers to climate change. J. Glaciol., 59(215), 480490
Banerjee, A and Azam, MF (2016) Temperature reconstruction from glacier length fluctuations in the Himalaya. Ann. Glaciol., 57, 189198
Barandun, M and 8 others (2015) Re-analysis of seasonal mass balance at Abramov glacier 1968–2014. J. Glaciol., 61(230), 11031117
Bashir, F, Zeng, X, Gupta, H and Hazenberg, PA (2017) Hydro-meteorological perspective on the Karakoram Anomaly using unique valley-based synoptic weather observations. Geophys. Res. Lett., 44(20), 10,47010,478 (doi: 10.1002/2017GL075284)
Benn, DI and 9 others (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev., 114, 156174
Benn, DI and 5 others, (2017) Structure and evolution of the drainage system of a Himalayan debris-covered glacier, and its relationship with patterns of mass loss. Cryosphere, 11, 22472264
Bhambri, R and 5 others (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere, 7, 13851398
Bhambri, R and 6 others (2015) Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013:a remote sensing and ground-based assessment. Nat. Hazards, 80, 18011822
Bhambri, R, Hewitt, K, Kawishwar, P and Pratap, B (2017) Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep., 7(1), 15391 (doi: 10.1038/s41598-017-15473-8)
Bhattacharya, A and 5 others (2016) Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. J. Glaciol., 62(236), 11151133
Bhutiyani, MR, Kale, VS and Pawar, NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol., 30(4), 535548
Bingyi, W (2005) Weakening of Indian summer monsoon in recent decades. Adv. Atmospheric Sci., 22(1), 2129
Bolch, T, Buchroithner, M, Pieczonka, T and Kunert, A (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J. Glaciol., 54(187), 592600
Bolch, T and 9 others (2012) The state and fate of Himalayan glaciers. Science, 336(6079), 310314
Bolch, T, Pieczonka, T, Mukherjee, K and Shea, J (2017) Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere, 11(1), 531
Bookhagen, B (2010) Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomat. Nat. Hazards Risk, 1(1), 3750
Bookhagen, B and Burbank, DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res.: Earth Surf., 115(F3), 125 (doi: 10.1029/2009JF001426)
Brun, F, Berthier, E, Wagnon, P, Kääb, A and Treichler, D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci., 10, 668673 (doi: 10.1038/ngeo2999)
Buri, P, Pellicciotti, F, Steiner, JF, Miles, ES and Immerzeel, WW (2016) A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Ann. Glaciol., 57(71), 199211
Chand, P and Sharma, MC (2015) Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Glob. Planet. Change, 135, 133147
Cogley, JG (2011) Present and future states of Himalaya and Karakoram glaciers. Ann. Glaciol., 52(59), 6973
Cogley, JG (2016) Glacier shrinkage across High Mountain Asia. Ann. Glaciol., 57(71), 4149
Cogley, JG, Kargel, JS, Kaser, G and van der Veen, CJ (2010) Tracking the source of glacier misinformation. Science, 327(5965), 522
Collier, E and 5 others (2013) High-resolution interactive modelling of the mountain glacier–atmosphere interface: an application over the Karakoram. Cryosphere, 7(3), 779795
Collier, E and 5 others (2015) Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram. Cryosphere, 9(4), 16171632
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Dash, SK, Jenamani, RK, Kalsi, SR and Panda, SK (2007) Some evidence of climate change in twentieth-century India. Clim. Change, 85(3), 299321
Dehecq, A, Gourmelen, N and Trouvé, E (2015) Deriving large-scale glacier velocities from a complete satellite archive: application to the Pamir–Karakoram–Himalaya. Remote Sens. Environ., 162, 5566
Dehecq, A, Millan, R, Berthier, E, Gourmelen, N and Trouve, E (2016) Elevation changes inferred from TanDEM-X data over the Mont-Blanc area: impact of the X-band interferometric bias. IEEE J-STARS, 9(8), 38703882 (doi: 10.1109/JSTARS.2016.2581482)
Dimri, AP and Dash, SK (2012) Wintertime climatic trends in the western Himalayas. Clim. Change, 111(3–4), 775800
Dimri, AP and Mohanty, UC (2009) Simulation of mesoscale features associated with intense western disturbances over western Himalayas. Meteorol. Appl., 16(3), 289308
Dobhal, DP, Gupta, AK, Mehta, M and Khandelwal, DD (2013) Kedarnath disaster: facts and plausible causes. Curr. Sci., 105, 171174
Farinotti, D and 37 others (2017) How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice thickness models intercomparison eXperiment. Cryosphere, 11, 949970
Favier, V, Wagnon, P, Chazarin, J-P, Maisincho, L and Coudrain, A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana Glacier 15, Ecuadorian Andes. J. Geophys. Res. Atmos., 109(D18), 115
Forsythe, N, Fowler, HJ, Li, X-F, Blenkinsop, S and Pritchard, D (2017) Karakoram temperature and glacial melt driven by regional atmospheric circulation variability. Nat. Clim. Chang., 7(9), 664–+ (doi: 10.1038/NCLIMATE3361)
Fowler, HJ and Archer, DR (2005) Hydro-climatological variability in the Upper Indus Basin and implications for water resources. Reg. Hydrol. Impacts Clim. Chang. Assess. Decis. Mak., 295, 131138
Fowler, HJ and Archer, DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J. Clim., 19(17), 42764293
Frey, H and 9 others (2014) Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 8(6), 23132333
Fujita, K (2008) Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett., 276(1), 1419
Fujita, K and Sakai, A (2014) Modelling runoff from a Himalayan debris-covered glacier. Hydrol. Earth Syst. Sci., 18(7), 2679
Fujita, K and 6 others (2013) Potential flood volume of Himalayan glacial lakes. Nat. Hazards Earth Syst. Sci., 13(7), 1827
Gardelle, J, Berthier, E and Arnaud, Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci., 5(5), 322325
Gardelle, J, Berthier, E, Arnaud, Y and Kääb, A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011. Cryosphere, 7, 18851886
Gardner, AS and 9 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857
Heid, T and Kääb, A (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere, 6(2), 467478
Herreid, S and 6 others (2015) Satellite observations show no net change in the percentage of supraglacial debris-covered area in northern Pakistan from 1977 to 2014. J. Glaciol., 61(227), 524536
Hewitt, K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’ Karakoram himalaya. Mt. Res. Dev., 25(4), 332340
Hewitt, K and Liu, J (2010) Ice-dammed lakes and outburst floods, Karakoram Himalaya: historical perspectives on emerging threats. Phys. Geogr., 31(6), 528551
Huintjes, E, Neckel, N, Hochschild, V and Schneider, C (2015) Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011. J. Glaciol., 61(230), 10481060
Huss, M and Hock, R (2015) A new model for global glacier change and sea-level rise. Front. Earth Sci., 3, 122
Immerzeel, WW, Van Beek, LP and Bierkens, MF (2010) Climate change will affect the Asian water towers. Science, 328(5984), 13821385
Immerzeel, WW, Pellicciotti, F and Bierkens, MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci., 6, 742745
Immerzeel, WW, Wanders, N, Lutz, AF, Shea, JM and Bierkens, MFP (2015) Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci., 19(11), 4673
Jacob, T, Wahr, J, Pfeffer, WT and Swenson, S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518
Jansson, P, Hock, R and Schneider, T (2003) The concept of glacier storage: a review. J. Hydrol., 282(1), 116129
Jóhannesson, T, Raymond, C and Waddington, ED (1989) Time–scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355369
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498
Kääb, A, Treichler, D, Nuth, C and Berthier, E (2015) Brief communication: contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere, 9(2), 557564
Kapnick, SB, Delworth, TL, Ashfaq, M, Malyshev, S and Milly, PC (2014) Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7(11), 834840
Kaser, G, Großhauser, M and Marzeion, B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci., 107(47), 2022320227
Kaspari, S and 5 others (2008) Snow accumulation rate on Qomolangma (Mount Everest), Himalaya: synchroneity with sites across the Tibetan Plateau on 50–100 year timescales. J. Glaciol., 54(185), 343352
Khanal, NR and 6 others (2015) A comprehensive approach and methods for glacial lake outburst flood risk assessment, with examples from Nepal and the transboundary area. Int. J. Water Resour. Dev., 31(2), 219237
Konrad, SK and 5 others (1999) Rock glacier dynamics and paleoclimatic implications. Geology, 27(12), 11311134
Kraaijenbrink, PDA, Bierkens, MFP, Lutz, AF and Immerzeel, WW (2017) Impact of a global temperature rise of 1.5 degrees Celsius on Asia's glaciers. Nature, 549, 257260
Kulkarni, AV and 6 others (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr. Sci., 92, 6974
Laha, S and 7 others (2017) Evaluating the contribution of avalanching to the mass balance of Himalayan glaciers. Ann. Glaciol., 19. (doi: 10.1017/aog.2017.27)
Lang, TJ and Barros, AP (2004) Winter storms in the central Himalayas. J. Meteorol. Soc. Japan, 82, 829844
Lejeune, Y, Bertrand, J-M, Wagnon, P and Morin, S (2013) A physically based model of the year-round surface energy and mass balance of debris-covered glaciers. J. Glaciol., 59(214), 327344
Linsbauer, A and 5 others (2016) Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Ann. Glaciol., 57(71), 119130
Lutz, AF, Immerzeel, WW, Shrestha, AB and Bierkens, MFP (2014) Consistent increase in high Asia's runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang., 4, 587592
Maussion, F and 5 others (2014) Precipitation seasonality and variability over the Tibetan plateau as resolved by the high Asia reanalysis. J. Clim., 27(5), 19101927
Mayer, C, Lambrecht, A, Belo, M, Smiraglia, C and Diolaiuti, G (2006) Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan. Ann. Glaciol., 43(1), 123131
Miles, ES and 5 others (2016) Refined energy-balance modelling of a supraglacial pond, Langtang Khola, Nepal. Ann. Glaciol., 57(71), 2940
Mölg, T, Maussion, F and Scherer, D (2014) Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat. Clim. Change, 4(1), 6873
Mukhopadhyay, B and Khan, A (2014a) A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. J. Hydrol., 509, 549572
Mukhopadhyay, B and Khan, A (2014b) Rising river flows and glacial mass balance in central Karakoram. J. Hydrol., 513, 192203
Mukhopadhyay, B and Khan, A (2015) A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate. J. Hydrol., 527, 119132
Neckel, N, Bolch, T and Hochschild, V (2014) Glacier mass changes on the Tibetan plateau 2003? 2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett., 9(1), 014009
Nepal, S, Krause, P, Flügel, W-A, Fink, M and Fischer, C (2014) Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model. Hydrol. Process., 28(3), 13291344
Nuimura, T, Fujita, K, Yamaguchi, S and Sharma, RR (2012) Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol., 58(210), 648656
Oerlemans, J (2001) Glaciers and climate change. A.A. Balkema, Lisse
Ojha, S and 6 others (2016) Glacier area shrinkage in eastern Nepal Himalaya since 1992 using high-resolution inventories from aerial photographs and ALOS satellite images. J. Glaciol., 62(233), 512524
Pellicciotti, F, Stephan, C, Miles, E, Immerzeel, WW and Bolch, T (2015) Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. J. Glaciol., 61(226), 373386
Potter, N and 5 others (1998) Galena Creek rock glacier revisited—new observations on an old controversy. Geogr. Ann.: Ser. A, Phys. Geo., 80(3–4), 251-265
Pritchard, HD (2017) Asia's glaciers are a regionally important buffer against drought. Nature, 545(7653), 169174
Quincey, DJ and 5 others (2009) Ice velocity and climate variations for Baltoro Glacier, Pakistan. J. Glaciol., 55(194), 10611071
Racoviteanu, AE and Bahuguna, IM (2014) Himalayan glaciers (India, Bhutan, Nepal), chapter 24. In Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Raup, B eds. Global land Ice measurements from space. Springer-Praxis, Heidelberg, 549582
Racoviteanu, AE, Armstrong, R and Williams, MW (2013) Evaluation of an ice ablation model to estimate the contribution of melting glacier ice to annual discharge in the Nepal Himalaya. Water Resour. Res., 49(9), 51175133
Racoviteanu, AE, Arnaud, Y, Williams, MW and Manley, WF (2015) Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga-Sikkim area, eastern Himalaya. Cryosphere, 9, 505523
Ragettli, S and 9 others (2015) Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour., 78, 94111
Ragettli, S, Bolch, T and Pellicciotti, F (2016) Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal. Cryosphere, 10, 20752097
Rankl, M, Kienholz, C and Braun, M (2014) Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere, 8(3), 977989
Reager, JT and 5 others (2016) A decade of sea level rise slowed by climate-driven hydrology. Science, 351(6274), 699703
Rodell, M, Velicogna, I and Famiglietti, JS (2009) Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002
Round, V, Leinss, S, Huss, M, Haemmig, C and Hajnsek, I (2017) Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere, 11(2), 723739 (doi: 10.5194/tc-11-723-2017)
Rowan, AV, Egholm, DL, Quincey, DJ and Glasser, NF (2015) Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya. Earth Planet. Sci. Lett., 430, 427438
Sakai, A and Fujita, K (2017) Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep., 7(1), 13717 (doi: 10.1038/s41598-017-14256-5)
Sakai, A, Nakawo, M and Fujita, K (2002) Distribution characteristics and energy balance of Ice cliffs on debris-covered glaciers, Nepal Himalaya. Arctic, Antarct. Alp. Res., 34, 12
Sakai, A and 5 others (2015) Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere, 9(3), 865880
Salerno, F, Buraschi, E, Bruccoleri, G, Tartari, G and Smiraglia, C (2008) Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. J. Glaciol., 54(187), 738752
Scherler, D and Strecker, MR (2012) Large surface velocity fluctuations of Biafo Glacier, central Karakoram, at high spatial and temporal resolution from optical satellite images. J. Glaciol., 58(209), 569580
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci., 4, 156159
Schmidt, S and Nüsser, M (2012) Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, northwest India. Arct. Antarct. Alp. Res., 44(1), 107121
Shangguan, D and 9 others (2014) Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Ann. Glaciol., 55(66), 6168
Shea, JM and Immerzeel, WW (2016) An assessment of basin-scale glaciological and hydrological sensitivities in the Hindu Kush–Himalaya. Ann. Glaciol., 57(71), 308318
Shea, JM, Immerzeel, WW, Wagnon, P, Vincent, C and Bajracharya, S (2015) Modelling glacier change in the Everest region, Nepal Himalaya. Cryosphere, 9(3), 11051128
Shekhar, MS, Chand, H, Kumar, S, Srinivasan, K and Ganju, A (2010) Climate-change studies in the western Himalaya. Ann. Glaciol., 51(54), 105112
Sherpa, SF and 8 others (2017) Contrasted surface mass balances of debris-free glaciers observed between the southern and the inner parts of the Everest region (2007–15). J. Glaciol., 63(240), 637651
Shrestha, AB, Wake, CP, Mayewski, PA and Dibb, JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J. Clim., 12(9), 27752786
Soncini, A and 9 others (2015) Future hydrological regimes in the upper Indus basin: a case study from a high-altitude glacierized catchment. J. Hydrometeorol., 16(1), 306326
Song, C, Huang, B, Richards, K, Ke, L and Hien Phan, V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour. Res., 50(4), 31703186
Tahir, AA, Adamowski, JF, Chevallier, P, Haq, AU and Terzago, S (2016) Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush–Karakoram–Himalaya region, Pakistan). Meteorol. Atmos. Phys., 128(6), 793811
Thakuri, S and 6 others (2014) Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery. Cryosphere, 8, 12971315
Thayyen, RJ and Gergan, JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a’ Himalayan catchment’. Cryosphere, 4, 115128
Thompson, S, Benn, DI, Mertes, J and Luckman, A (2016) Stagnation and mass loss on a Himalayan debris-covered glacier: processes, patterns and rates. J. Glaciol., 62(233), 467485
Vaughan, DG and 13 others (2013) Observations: Cryosphere. In Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM eds. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 317382, Cambridge University Press, Cambridge, UK and New York, NY, USA
Vincent, C and 9 others (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere, 7(2), 569582
Vincent, C and 10 others (2016) Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal. Cryosphere, 10, 18451858
Wagnon, P and 9 others (2013) Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere, 7(6), 17691786
Watson, CS, Quincey, DJ, Carrivick, JL and Smith, MW (2016) The dynamics of supraglacial ponds in the Everest region, central Himalaya. Glob. Planet. Change, 142, 1427
Yi, S and Sun, W (2014) Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth, 119(3), 25042517
Zemp, M and 6 others (2012) Fluctuations of glaciers 2005–2010, volume X. ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland
WGMS (2013) Glacier Mass Balance Bulletin No. 12 (2010–2011). Zemp, M., Nussbaumer, S. U., Naegeli, K., Gärtner-Roer, I., Paul, F., Hoelzle, M., and Haeberli, W. (eds.), ICSU(WDS)/IUGG(IACS)/UNEP/ UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 106 pp., publication based on database version: doi:10.5904/wgms-fog-2013-11.
Zemp, M and 38 others (2015) Historically unprecedented global glacier decline in the early 21st century. J. Glaciol., 61(228), 745762
Zhang, G and 13 others (2017) Lake volume and groundwater storage variations in Tibetan plateau's endorheic basin. Geophys. Res. Lett., 44(11), 55505560 (doi: 10.1002/2017GL073773)
Zhou, Y, Li, Z and Li, J (2017) Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol., 63(238), 331342
Zhu, M and 5 others (2015) Energy-and mass-balance comparison between Zhadang and Parlung No. 4 glaciers on the Tibetan Plateau. J. Glaciol., 61(227), 595607
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Azam et al. supplementary material
Azam et al. supplementary material 1

 Word (18.3 MB)
18.3 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 113
Total number of PDF views: 820 *
Loading metrics...

Abstract views

Total abstract views: 1226 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2018 - 27th May 2018. This data will be updated every 24 hours.