Skip to main content
×
×
Home

Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar

  • YASUSHI FUKAMACHI (a1) (a2) (a3), DAISUKE SIMIZU (a1) (a4), KAY I. OHSHIMA (a1) (a2), HAJO EICKEN (a5), ANDREW R. MAHONEY (a2) (a3) (a6), KATSUSHI IWAMOTO (a4) (a7) (a8), ERIKA MORIYA (a9) (a10) and SOHEY NIHASHI (a11)...
Abstract

Time series ice-draft data were obtained from moored ice-profiling sonar (IPS), in the coastal northeastern Chukchi Sea during 2009/10. Time series data show seasonal growth of sea-ice draft, occasionally interrupted by coastal polynya. The sea-ice draft distribution indicates a slightly lower abundance of thick, deformed ice compared with the eastern Beaufort Sea. In January, a rapid increase in the abundance of thick ice coincided with a period of minimal drift indicating compaction again the coast and dynamical thickening. The overall mean draft and corresponding derived thickness are 1.27 and 1.38 m, respectively. The evolution of modal ice thickness observed can be explained mostly by thermodynamic growth. The derived ice thicknesses are used to estimate heat losses based on ERA-interim data. Heat losses from the raw, 1 s IPS data are ~50 and 100% greater than those calculated using IPS data averaged over spatial scales of ~20 and 100 km, respectively. This finding demonstrates the importance of subgrid-scale ice-thickness distribution for heat-loss calculation. The heat-loss estimate based on thin ice data derived from AMSR-E data corresponds well with that from the 1 s observed ice-thickness data, validating heat-loss estimates from the AMSR-E thin ice-thickness algorithm.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sea-ice thickness in the coastal northeastern Chukchi Sea from moored ice-profiling sonar
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Yasushi Fukamachi <yasuf@lowtem.hokudai.ac.jp>
References
Hide All
ASL Environmental Sciences (2014) IPS processing toolbox™ user's guide. Sidney
Behrendt, A, Dierking, W, Fahrbach, E and Witte, H (2013) Sea ice draft in the Weddell Sea, measured by upward looking sonars. Earth Syst. Sci. Data, 5, 209226 (doi: 10.5194/essd-5-209-2013)
Behrendt, A, Dierking, W and Witte, H (2015) Thermodynamic sea ice growth in the central Weddell Sea, observed in upward-looking sonar data. J. Geophys. Res., 120, 22702286 (doi: 10.1002/2014JC010408)
Cavalieri, DJ and Martin, S (1994) The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean. J. Geophys. Res., 99(C9), 1834318362
Comiso, J (1995) SSM/I ice concentrations using the Bootstrap algorithm. Natl. Aeronaut. Space Admin. Ref. Pub., 1350, 50
Comiso, JC and Parkinson, CL (2008) Arctic sea ice parameters from AMSR-E data using two techniques and comparisons with sea ice from SSM/I. J. Geophys. Res., 113, C02S05 (doi: 10.1029/2007JC004255)
Druckenmiller, ML, Eicken, H, Johnson, MA, Pringle, DJ and Williams, CC (2009) Towards an integrated coastal sea-ice observatory: system components and a case study at Barrow, Alaska. Cold Reg. Sci. Technol., 56(2–3), 6172 (doi: 10.1016/j.coldregions.2008.12.003)
Eicken, H and 5 others (2009, updated in 2012). Automated ice mass balance site (SIZONET). UCAR/NCAR – CISL – ACADIS. http://dx.doi.org/10.5065/D6MW2F2H
Fukamachi, Y and 5 others (2003) Variability of sea-ice draft off Hokkaido in the Sea of Okhotsk revealed by a moored ice-profiling sonar in winter of 1999. Geophys. Res. Lett., 30(7), 1376 (doi: 10.1029/2002GL016197)
Fukamachi, Y and 5 others (2006) Sea-ice thickness in the southwestern Sea of Okhotsk revealed by a moored ice-profiling sonar. J. Geophys. Res., 111, C09018 (doi: 10.1029/2005JC003327)
Fukamachi, Y and 8 others (2009) Direct observations of sea-ice thickness and brine rejection off Sakhalin in the Sea of Okhotsk. Conti. Shelf Res., 29, 15411548 (doi: 10.1016/j.csr.2009.04.005)
Hirano, D and 8 others (2016) A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska. J. Geophys. Res., 121, 980997 (doi: 10.1002/2015JC011318)
Itoh, M and 5 others (2012) Interannual variability of Pacific Winter Water inflow through Barrow Canyon from 2000 to 2006. J. Oceanogr., 68(4), 575592 (doi: 10.1007/s10872-012-0120-1)
Itoh, M, Nishino, S, Kawaguchi, Y and Kikuchi, T (2013) Barrow Canyon volume, heat, and freshwater fluxes revealed by long-term mooring observations between 2000 and 2008. J. Geophys. Res., 118, 117 (doi: 10.1002/jgrc.20290)
Iwamoto, K, Ohshima, KI, Tamura, T and Nihashi, S (2013) Estimation of thin ice thickness from AMSR-E data in the Chukchi Sea. Int. J. Remote Sens., 34(2), 468489 (doi: 10.1080/01431161.2012.712229)
Iwamoto, K, Ohshima, KI and Tamura, T (2014) Improved mapping of sea ice production in the Arctic Ocean using AMSR-E thin ice thickness algorithm. J. Geophys. Res., 119, 35743594 (doi: 10.1002/2013JC009749)
Komuro, Y and Suzuki, T (2013) Impact of subgrid-scale ice thickness distribution on heat flux on and through sea ice. Ocean Modell., 71, 1325 (doi: 10.1016/j.ocemod.2012.08.004)
Krishfield, RA and 6 others (2014) Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res., 119, 12171305 (doi: 10.1002/2013JC008999)
Kurtz, NT and 6 others (2009) Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. J. Geophys. Res., 114(C10), C10007 (doi: 10.1029/2009JC005292)
Ladd, C, Mordy, CW, Salo, SA and Stabeno, PJ (2016) Winter water properties and the Chukchi Polynya. J. Geophys. Res., 121, 55165534 (doi: 10.1002/2016JC011918)
Mahoney, AR, Eicken, H and Shapiro, L (2007) How fast is landfast sea ice? A study of the attachment and detachment of nearshore ice at Barrow, Alaska. Cold Reg. Sci. Technol., 47(3), 233255 (doi: 10.1016/j.coldregions.2006.09.005)
Mahoney, AR, Eicken, H, Gaylord, AG and Gens, R (2014) Landfast sea ice extent in the Chukchi and Beaufort Seas: the annual cycle and decadal variability. Cold Reg. Sci. Technol., 103, 4156 (doi: 10.1016/j.coldregions.2014.13.003)
Mahoney, AR and 8 others (2015) Taking a look at both sides of the ice: comparison of ice thickness and drift speed as observed from moored, airborne and shore-based instruments near Barrow, Alaska. Ann. Glaciol., 56(69), 363372 (doi: 10.3189/2015AoG69A565)
Martin, S (1981) Frazil ice in rivers and oceans. Annu. Rev. Fluid Mech., 13, 379397 (doi: 10.1146/annurev.fl.13.010181.002115)
Martin, S, Drucker, R, Kwok, R and Holt, B (2004) Estimation of the thin ice thickness and heat flux for the Chukchi Sea Alaskan coast polynya from Special Sensor Microwave/Imager data. J. Geophys. Res., 109, C10012 (doi: 10.1029/2004JC002428)
Martin, S, Drucker, R, Kwok, R and Holt, B (2005) Improvements in the estimates of ice thickness and production in the Chukchi Sea polynyas derived from AMSR-E. Geophys. Res. Lett., 32, L05505 (doi: 10.1029/2004GL022013)
Melling, H and Lewis, EL (1982) Shelf drainage flows in the Beaufort Sea and their effect on the Arctic Ocean pycnocline. Deep-Sea Res., 29(8A), 967985
Melling, H and Riedel, DA (1995) The underside topography of sea ice over the continental shelf of the Beaufort Sea in the winter of 1990. J. Geophys. Res., 100 (C7), 1364113653
Melling, H and Riedel, DA (1996) Development of seasonal pack ice in the Beaufort Sea during the winter of 1991–1992: a view from below. J. Geophys. Res., 101(C5), 1197511991
Melling, H, Johnston, PH and Riedel, DA (1995) Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Oceanic Technol., 12(3), 589602
Melling, H, Riedel, DA and Gedalof, Z (2005) Trends in the draft and extent of seasonal pack ice, Canadian Beaufort Sea. Geophys. Res. Lett., 32, L24501 (doi: 10.1029/2005GL024483)
Ohshima, KI, Watanabe, T and Nihashi, S (2003) Surface Heat Budget of the Sea of Okhotsk during 1987-2001 and the Role of Sea Ice on it. J. Meteorol. Society Jpn., 81(4), 653667
Paquette, RG and Bourke, R (1974) Observation on the coastal current of Arctic Alaska. J. Mar. Res., 32, 195207
Signorini, SR and Cavalieri, DJ (2002) Modeling dense water production and salt transport from Alaskan coastal polynyas. J. Geophys. Res., 107(C9), 3051 (doi: 10.1029/2000JC000491)
Singh, RK, Oza, SR, Vyas, NK and Sarkar, A (2011) Estimation of thin ice thickness from the advanced microwave scanning radiometer-EOS for Coastal Polynyas in the Chukchi and Beaufort Seas. IEEE Trans. Geosci. Remote Sens., 49, 22932298 (doi: 10.1109/TGRS.2011.2123101)
Strass, VH (1998) Measuring sea ice draft and coverage with moored upward looking sonars. Deep-Sea Res. I, 45(4–5), 795818
Tamura, T and Ohshima, KI (2011) Mapping of sea ice production in the Arctic coastal polynyas. J. Geophys. Res., 116, C07030 (doi: 10.1029/2010JC0068586)
Timco, GW and Frederking, RMW (1996) A review of sea ice density. Cold Reg. Sci. Technol., 24(1), 16 (doi: 10.1016/0165-232X(95)00007-X)
Valenti, VA (2015) Sea ice parameters for actions on offshore structures in the Beaufort and Chukchi Seas. University of Alaska Anchorage, Anchorage
Wadhams, P and Davy, RJ (1986) On the spacing and draft distributions for pressure ridge keels. J. Geophys. Res., 91(C9), 1069710708
Wadhams, P and Horne, RJ (1980) An analysis of ice profiles obtained by submarine sonar in the Beaufort Sea. J. Glaciol., 25(93), 401424
Wadhams, P, McLaren, AS and Weintraub, R (1985) Ice thickness distribution in Davis Strait in February from submarine sonar profiles. J. Geophys. Res., 90(C1), 10691077
Warren, SG and 6 others (1999) Snow depth on Arctic sea ice. J. Climate, 12(6), 18141829 (doi: 10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2)
Weingartner, TJ, Cavalieri, DJ, Aagaard, K and Sasaki, Y (1998) Circulation, dense water formation, and outflow on the northeast Chukchi shelf. J. Geophys. Res., 103(C4), 76477661
Winsor, P and Björk, G (2000) Polynya activity in the Arctic Ocean from 1958 to 1997. J. Geophys. Res., 105(C4), 87898803
Winsor, P and Chapman, DC (2002) Distribution and interannual variability of dense water production from coastal polynyas on the Chukchi Shelf. J. Geophys. Res., 107(C7), 3079 (doi: 10.1029/2001JC000984)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 17
Total number of PDF views: 133 *
Loading metrics...

Abstract views

Total abstract views: 221 *
Loading metrics...

* Views captured on Cambridge Core between 4th October 2017 - 21st August 2018. This data will be updated every 24 hours.