Skip to main content Accessibility help
×
×
Home

The second Chinese glacier inventory: data, methods and results

  • Wanqin Guo (a1), Shiyin Liu (a1), Junli Xu (a1), Lizong Wu (a2), Donghui Shangguan (a1), Xiaojun Yao (a3), Junfeng Wei (a1), Weijia Bao (a1), Pengchun Yu (a4), Qiao Liu (a5) and Zongli Jiang (a6)...
Abstract

The second Chinese glacier inventory was compiled based on 218 Landsat TM/ETM+ scenes acquired mainly during 2006–10. The widely used band ratio segmentation method was applied as the first step in delineating glacier outlines, and then intensive manual improvements were performed. The Shuttle Radar Topography Mission digital elevation model was used to derive altitudinal attributes of glaciers. The boundaries of some glaciers measured by real-time kinematic differential GPS or digitized from high-resolution images were used as references to validate the accuracy of the methods used to delineate glaciers, which resulted in positioning errors of ±10 m for manually improved clean-ice outlines and ±30 m for manually digitized outlines of debris-covered parts. The glacier area error of the compiled inventory, evaluated using these two positioning accuracies, was ±3.2%. The compiled parts of the new inventory have a total area of 43 087 km2, in which 1723 glaciers were covered by debris, with a total debris-covered area of 1494 km2. The area of uncompiled glaciers from the digitized first Chinese glacier inventory is ∼8753 km2, mainly distributed in the southeastern Tibetan Plateau, where no images of acceptable quality for glacier outline delineation can be found during 2006–10.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The second Chinese glacier inventory: data, methods and results
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The second Chinese glacier inventory: data, methods and results
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The second Chinese glacier inventory: data, methods and results
      Available formats
      ×
Copyright
Corresponding author
Correspondence: Wanqin Guo <guowq@lzb.ac.cn>
References
Hide All
Aizen, VB, Kuzmichenok, VA, Surazakov, AB and Aizen, EM (2006) Glacier changes in the central and northern Tien Shan during the last 140 years based on surface and remote-sensing data. Ann. Glaciol., 43, 202213 (doi: 10.3189/172756406781812465)
Aniya, M, Sato, H, Naruse, R, Skvarca, P and Casassa, G (1996) The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens., 62(12), 13611369
Bliss, A, Hock, R and Cogley, JG (2013) A new inventory of mountain glaciers and ice caps for the Antarctic periphery. Ann. Glaciol., 54(63), 191199 (doi: 10.3189/2013AoG63A377)
Bolch, T, Buchroithner, MF and Kunert, A (2007) Automated delineation of debris-covered glaciers based on ASTER data. In Geoinformation in Europe, Proceedings of the 27th European Association of Remote Sensing Laboratories (EARSeL) Symposium, 7–9 June2007, Bozen, Italy. Millpress, Rotterdam, 402410
Bolch, T, Menounos, B and Wheate, R (2010a) Landsat-based inventory of glaciers in western Canada, 1985–2005. Remote Sens. Environ.,114(1),127137 (doi: 10.1016/j.rse.2009.08.015)
Bolch, T and 7 others (2010b) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4(3), 419433 (doi: 10.5194/tc-4-419-2010)
Bown, F, Rivera, A and Acuna, C (2008) Recent glacier variations at the Aconcagua basin, central Chilean Andes. Ann. Glaciol., 48, 4348 (doi: 10.3189/172756408784700572)
Burns, P and Nolin, A (2014) Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sens. Environ., 140, 165178 (doi: 10.1016/j.rse.2013.08.026)
Frey, H and Paul, F (2012) On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories. Int. J. Appl. Earth Obs. Geoinform., 18, 480490 (doi: 10.1016/j.jag.2011.09.020).
Fujisada, H, Urai, M and Iwasaki, A (2012) Technical methodology for ASTER Global DEM. IEEE Trans. Geosci. Remote Sens., 50(10), 37253736 (doi: 10.1109/TGRS.2012.2187300)
Granshaw, FD and Fountain, AG (2006) Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. J. Glaciol., 52(177), 251256 (doi: 10.3189/172756506781828782)
Guo, W, Liu, S, Wei, J and Bao, W (2013) The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann. Glaciol., 54(63), 299310 (doi: 10.3189/2013AoGA495)
Haeberli, W and Epifani, F (1986) Mapping the distribution of buried glacier ice – an example from Lago delle Locce, Monte Rosa, Italian Alps. Ann. Glaciol., 8, 7881
Hagg, W, Mayer, C, Lambrecht, A, Kriegel, D and Azizov, E (2013) Glacier changes in the Big Naryn basin, Central Tian Shan. Global Planet. Change, 110A, 4050 (doi: 10.1016/j.gloplacha.2012.07.010)
Hall, DK, Williams, RS and Bayr, KJ (1992) Glacier recession in Iceland and Austria. Eos, 73(12), 129141
Huang, MH (1990) On the temperature distribution of glaciers in China. J. Glaciol., 36(123), 210216
James, TD, Murray, T, Barrand, NE, Sykes, HJ, Fox, AJ and King, MA (2012) Observations of enhanced thinning in the upper reaches of Svalbard glaciers. Cryosphere, 6(6), 13691381 (doi: 10.5194/tc-6-1369-2012)
Kienholz, C, Hock, R and Arendt, AA (2013) A new semiautomatic approach for dividing glacier complexes into individual glaciers. J. Glaciol., 59(217), 925937 (doi: 10.3189/2013JoG12J138)
Kienholz, C, Rich, JL, Arendt, AA and Hock, R (2014) A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada. Cryosphere, 8(2), 503519 (doi: 10.5194/tc-8-503-2014)
Le Bris, R and Paul, F (2013) An automatic method to create flow lines for determination of glacier length: a pilot study with Alaskan glaciers. Comput. Geosci., 52, 234245 (doi: 10.1016/j.cageo.2012.10.014)
Le Bris, R, Paul, F, Frey, H and Bolch, T (2011) A new satellite-derived glacier inventory for western Alaska. Ann. Glaciol., 52(59), 135143 (doi: 10.3189/172756411799096303)
Lee, H, Shum, CK, Tseng, K-H, Huang, Z and Sohn, H-G (2013) Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. Remote Sens. Environ., 132, 4048 (doi: 10.1016/j.rse.2013.01.007)
Li, J, Liu, SY, Shangguan, DH and Zhang, YS (2010) Identification of ice elevation change of the Shuiguan River No. 4 glacier in the Qilian Mountains, China. J. Mtn Sci., 7(4), 375379 (doi: 10.1007/s11629-010-1124-1)
Li, P and 8 others (2013) Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. Int. J. Remote Sens., 34(5), 17441771 (doi: 10.1080/01431161.2012.726752)
Livingstone, SJ, Clark, CD, Woodward, J and Kingslake, J (2013) Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets. Cryosphere, 7(6), 17211740 (doi: 10.5194/tc-7-1721-2013)
Machguth, H and Huss, M (2014) The length of the world’s glaciers – a new approach for the global calculation of center lines. Cryosphere, 8(5), 17411755 (doi: 10.5194/tc-8-1741-2014).
Mehta, M, Dobhal, DP, Pratap, B, Verma, A, Kumar, A and Srivastava, D (2013) Glacier changes in Upper Tons River basin, Garhwal Himalaya, Uttarakhand, India. Z. Geomorphol., 57(2), 225244 (doi: 10.1127/0372-8854/2012/0095)
Meier, M and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Müller, F, Caflisch, T and Müller, G (1977) Instructions for the compilation and assemblage of data for a world glacier inventory. IAHS(ICSI)/UNEP/UNESCO. Temporary Technical Secretariat for the World Glacier Inventory. Swiss Federal Institute of Technology (ETH), Zürich
Narama, C, Shimamura, Y, Nakayama, D and Abdrakhmatov, K (2006) Recent changes of glacier coverage in the western Terskey-Alatoo range, Kyrgyz Republic, using Corona and Landsat. Ann. Glaciol., 43, 223229 (doi: 10.3189/172756406781812195)
O’Brien, HW and Munis, RH (1975) Red and near-infrared spectral reflectance of snow. In Rango, A ed. Proceedings of Operational Applications of Satellite Snowcover Observations, 18–20 August 1975, South Lake Tahoe, CA (NASA SP-391) National Aeronautics and Space Administration, Washington DC, 346360
Pan, BT and 7 others (2012) Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai– Tibetan Plateau and their climatic forcing. Cryosphere, 6(5), 10871101 (doi: 10.5194/tc-6-1087-2012)
Paul, F (2001) Evaluation of different methods for glacier mapping using LandsatTM. In EARSeL Workshop on Remote Sensing of Land Ice and Snow, 16–17 June 2000, Dresden, Germany. Proceedings. European Association of Remote Sensing Laboratories, Paris, 239245
Paul, F and Andreassen, LM (2009) A new glacier inventory for the Svartisen region, Norway, from Landsat ETM+ data: challenges and change assessment. J. Glaciol., 55(192), 607618 (doi: 10.3189/002214309789471003)
Paul, F and Svoboda, F (2009) A new glacier inventory on southern Baffin Island, Canada, from ASTER data: II. Data analysis, glacier changes and applications. Ann. Glaciol., 50(53), 2231 (doi: 10.3189/172756410790595921)
Paul, F, Huggel, C and Kaab, A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ., 89(4), 510518 (doi: 10.1016/j.rse.2003.11.007)
Paul, F and 9 others (2009) Recommendations for the compilation of glacier inventory data from digital sources. Ann. Glaciol., 50(53), 119126 (doi: 10.3189/172756410790595778)
Paul, F and 9 others (2010) Guidelines for the compilation of glacier inventory data from digital sources. WGMS, GLIMS, and GlobGlacier http://globglacier.ch/docs/guidelines_inventory.pdf
Paul, F, Andreassen, LM and Winsvold, SH (2011a) A new glacier inventory for the Jostedalsbreen region, Norway, from Landsat TM scenes of 2006 and changes since 1966. Ann. Glaciol., 52(59), 153162 (doi: 10.3189/172756411799096169)
Paul, F, Frey, H and Le Bris, R (2011b) A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results. Ann. Glaciol., 52(59), 144152 (doi: 10.3189/172756411799096295)
Paul, F and 19 others (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol., 54(63), 171182 (doi: 10.3189/2013AoG63A296)
Paul, F and 24 others (in press) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. (doi: 10.1016/j.rse.2013.07.043)
Pfeffer, WT and 19 others (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol., 60(221), 537552 (doi: 10.3189/2014JoG13J176)
Qin, DH (2012) Climate and environment change in China: 2012, the comprehensive volume. Meteorological Press, Beijing [in Chinese]
Racoviteanu, AE, Arnaud, Y, Williams, MW and Ordonez, J (2008) Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol., 54(186), 499510 (doi: 10.3189/002214308785836922)
Racoviteanu, AE, Paul, F, Raup, B, Khalsa, SJS and Armstrong, R (2009) Challenges and recommendations in mapping of glacier parameters from space: results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Ann. Glaciol., 50(53), 5369 (doi: 10.3189/172756410790595804)
Racoviteanu, A, Arnaud, Y, Williams, M and Manley, WF (2014) Spatial patterns in glacier area and elevation changes from 1962 to 2006 in the monsoon-influenced eastern Himalaya. Cryosphere Discuss., 8(4), 39493998 (doi: 10.5194/tcd-8-3949-2014)
Rastner, P, Bolch, T, Mölg, N, Machguth, H, Le Bris, R and Paul, F (2012) The first complete inventory of the local glaciers and ice caps on Greenland. Cryosphere, 6(6), 14831495 (doi: 10.5194/tc-6-1483-2012)
Raup, B and Khalsa, SJS (2010) GLIMS Analysis Tutorial. http://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_letter.pdf
Raup, B and 11 others (2007) Remote sensing and GIS technology in the global land ice measurements from space (GLIMS) project. Comput. Geosci., 33(1), 104125 (doi: 10.1016/j.cageo.2006.05.015)
Rignot, E, Rivera, A and Casassa, G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science, 302(5644), 434437 (doi: 10.1126/science.1087393)
Rivera, A, Bown, F, Casassa, G, Acuna, C and Clavero, J (2005) Glacier shrinkage and negative mass balance in the Chilean Lake District (40°S). Hydrol. Sci. J., 50(6), 963974 (doi: 10.1623/hysj.2005.50.6.963)
Rivera, A, Benham, T, Casassa, G, Bamber, J and Dowdeswell, JA (2007) Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Global Planet. Change, 59(1–4), 126137 (doi: 10.1016/j.gloplacha.2006.11.037)
Shangguan, DH, Liu, SY, Ding, YJ, Zhang, YS, Du, EJ and Wu, Z (2008) Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. J. Glaciol., 54(188), 949951 (doi: 10.3189/002214308787780003)
Shangguan, D, Liu, S, Ding, Y, Ding, L, Xu, J and Jing, L (2009) Glacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progr. Natur. Sci., 19(6), 727732 (doi: 10.1016/j.pnsc.2008.11.002)
Shangguan, DH, Liu, SY, Ding, YJ, Zhang, YS, Li, XY and Wu, Z (2010) Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. J. Glaciol., 56(196), 309317 (doi: 10.3189/002214310791968566)
Shi, Y and Li, J (1981) Glaciological research of the Qinghai–Xizang Plateau in China. In Geological and ecological studies of Qinghai–Xizang Plateau. Vol. 2. Environment and ecology of Qinghai–Xizang Plateau. Science Press, Beijing; Gordon and Breach, New York, 15891597
Shi, Y, Liu, S, Ye, B, Liu, C and Wang, Z (2008) Concise glacier inventory of China. Shanghai Popular Science Press, Shanghai
Shi, Y, Liu, C and Kang, E (2009) The Glacier Inventory of China. Ann. Glaciol., 50(53), 14 (doi: 10.3189/172756410790595831)
Shukla, A, Arora, MK and Gupta, RP (2010) Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ., 114(7), 13781387 (doi: 10.1016/j.rse.2010.01.015)
Sidjak, RW and Wheate, RD (1999) Glacier mapping of the Illecillewaet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens., 20(2), 273284 (doi: 10.1080/014311699213442)
Taschner, S and Ranzi, R (2002) Comparing the opportunities of Landsat-TM and Aster data for monitoring a debris covered glacier in the Italian Alps within the GLIMS project. In IGARSS ‘02. 22nd International Geoscience and Remote Sensing Symposium, 24–28 June 2002, Toronto, Canada. Proceedings, Vol. 2. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 10441046
UNESCO/International Association of Scientific Hydrology (IASH) (1970) Perennial ice and snow masses: a guide for compilation and assemblage of data for a world inventory. (Technical Papers in Hydrology 1, A2486) UNESCO/IASH, Paris
Vaughan, DG and 13 others (2013) Observations: cryosphere. Cambridge University Press, Cambridge and New York
Wang, NL and 8 others (2014) Present changes of the Cryosphere on the Tibetan Plateau. In China Association for Science and Technology ed. Report on advances in Tibetan Plateau research . China Science and Technology Press, Beijing, 162196 [in Chinese]
Warren, SG (1982) Optical properties of snow. Rev. Geophys., 20(1), 6789 (doi: 10.1029/RG020i001p00067)
Woodcock, CE and 18 others (2008) Free access to Landsat imagery. Science, 320(5879), 1011 (doi: 10.1126/science.320.5879.1011a)
Wu, L and Li, X (2004) China Glacier Information System. China Ocean Press, Beijing [in Chinese]
Xu, J and 11 others (in press) The revise and digitization of first glacier inventory of China. J. Glaciol. Geocryol. [in Chinese]
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663667 (doi: 10.1038/NCLIMATE1580)
Zhao, G Xue, H and Ling, F (2010) Assessment of ASTER GDEM performance by comparing with SRTM and ICESat/GLAS data in central China. In Proceedings of the 18th International Conference on Geoinformatics, 18–20 June 2010, Beijing, China. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 15 (doi: 10.1109/GEOINFORMATICS.2010.5567970)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed