Skip to main content

Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

  • Vena W. Chu (a1), Laurence C. Smith (a1), Asa K. Rennermalm (a1), Richard R. Forster (a2), Jason E. Box (a3) and Niels Reeh (a4)...

Increased mass losses from the Greenland ice sheet and inferred contributions to sea-level rise have heightened the need for hydrologic observations of meltwater exiting the ice sheet. We explore whether temporal variations in ice-sheet surface hydrology can be linked to the development of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet
      Available formats
Hide All
Abdalati, W. and Steffen, K.. 1997. Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J. Climate, 10(2), 165175.
Abdalati, W. and 9 others. 2001. Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J. Geophys. Res., 106(D24), 33,72933,742.
Alsdorf, D.E., Rodríguez, E. and Lettenmaier, D.P.. 2007. Measuring surface water from space. Rev. Geophys., 45(RG2), RG2002. (10.1029/2006RG000197.)
Bartholomaus, T.C., Anderson, R.S. and Anderson, S.P.. 2008. Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337.
Box, J.E. and Ski, K.. 2007. Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol., 53(181), 257265.
Box, J.E. and 8 others. 2006. Greenland ice sheet surface mass balance variability (1988–2004) from calibrated polar MM5 output. J. Climate, 19(12), 27832800.
Castaing, P. and Allen, G.P.. 1981. Mechanisms controlling seaward escape of suspended sediment from the Gironde: a macrotidal estuary in France. Mar. Geol., 40(1–2), 101118.
Chen, Z., Curran, P.J. and Hansom, J.D.. 1992. Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sens. Environ., 40(1), 6777.
Das, S.B. and 6 others. 2008. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781.
Dowdeswell, J.A. and Cromack, M.. 1991. Behavior of a glacier-derived suspended sediment plume in a small Arctic inlet. J. Geol., 99(1), 111123.
Doxaran, D., Froidefond, J.-M., Lavender, S. and Castaing, P.. 2002. Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ., 81(1), 149161.
Doxaran, D., Froidefond, J.-M. and Castaing, P.. 2003. Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Appl. Opt., 42(15), 26232634.
Hall, D.K., Williams, S.B. Jr, Luthcke, R.S. and Digirolamo, N.E.. 2008. Greenland ice sheet surface temperature, melt and mass loss: 2000–2006. J. Glaciol., 54(184), 8193.
Halverson, M.J. and Pawlowicz, R.. 2008. Estuarine forcing of a river plume by river flow and tides. J. Geophys. Res., 113(C9), C09033. (10.1029/2008JC004844.)
Hammer, K.M. and Smith, N.D.. 1983. Sediment production and transport in a proglacial stream: Hilda Glacier, Alberta, Canada. Boreas, 12(2), 91106.
Howat, I.M., Joughin, I.R. and Scambos, T.A.. 2007. Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561.
Howat, I.M., Smith, B.E., Joughin, I. and Scambos, T.A.. 2008a. Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophys. Res. Lett., 35(17), L17505. (10.1029/2008GL034496.)
Howat, I.M., Joughin, I., Fahnestock, M., Smith, B.E. and Scambos, T.. 2008b. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646660.
Hu, C., Chen, Z., Clayton, T.D., Swarzenski, P., Brock, J.C. and Muller-Karger, F.E.. 2004. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sens. Environ., 93(3), 423441.
Joughin, I. and 8 others. 2008a. Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res., 113(F1), F01004. (10.1029/2007JF000837.)
Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M. and Moon, T.. 2008b. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781783.
Krabill, W. and 12 others. 2004. Greenland Ice Sheet: increased coastal thinning. Geophys. Res. Lett., 31(24), L24402. (10.1029/2004GL021533.)
Lewis, S.M. and Smith, L.C.. 2009. Hydrologic drainage of the Greenland Ice Sheet. Hydrol. Process., 23(14), 20042011.
Luthcke, S.B. and 8 others. 2006. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314(5803), 12861289.
Lüthje, M., Pedersen, L.T., Reeh, N. and Greuell, W.. 2006. Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin. J. Glaciol., 52(179), 608618.
McMillan, M., Nienow, P., Shepherd, A., Benham, T. and Sole, A.. 2007. Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet. Earth Planet. Sci. Lett., 262(3–4), 484492.
Meehl, G.A. and 12 others. 2007. Global climate projections. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 747845.
Mernild, S.H., Hasholt, B., Kane, D.L. and Tidwell, A.C.. 2008. Jökulhlaup observed at Greenland ice sheet. Eos, 89(35), 321322. (10.1029/2008EO350001.)
Miller, R.L. and McKee, B.A.. 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ., 93(1–2), 259266.
Mote, T.L. 2007. Greenland surface melt trends 1973–2007: evidence of a large increase in 2007. Geophys. Res. Lett., 34(22), L22507. (10.1029/2007GL031976.)
Nghiem, S.V., Steffen, K., Kwok, R. and Tsai, W.Y.. 2001. Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter change. J. Glaciol., 47(159), 539547.
Pfeffer, W.T., Meier, M.F. and Illangasekare, T.H.. 1991. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res., 96(C12), 22,11722,124.
Pfeffer, W.T., Harper, J.T. and O’Neel, S.. 2008. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321(5894), 13401343.
Ramage, J.M. and Isacks, B.L.. 2003. Interannual variations of snowmelt and refreeze timing in southeast-Alaskan icefields, U.S.A. J. Glaciol., 49(164), 102116.
Reeh, N. 2008. A nonsteady-state firn-densification model for the percolation zone of a glacier. J. Geophys. Res., 113(F3), F03023. (10.1029/2007JF000746.)
Rennermalm, A.K., Smith, L.C., Stroeve, J.C. and Chu, V.W.. 2009. Does sea ice influence Greenland ice sheet surface melt? Environ. Res. Lett., 4(2). (10.1088/1748-9326/4/2/024011.)
Rignot, E. and Thomas, R.H.. 2002. Mass balance of polar ice sheets. Science, 297(5586), 15021506.
Rignot, E. and Kanagaratnam, P.. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990.
Rignot, E., Box, J.E., Burgess, E. and Hanna, E.. 2008. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35(20), L20502. (10.1029/2008GL035417.)
Ritchie, J.C., Cooper, C.M. and Schiebe, F.R.. 1990. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens. Environ., 33(2), 137148.
Schneider, T. and Bronge, C.. 1996. Suspended sediment transport in the Storglaciären drainage basin. Geogr. Ann., 78A(2–3), 155161.
Shepherd, A., Hubbard, A., Nienow, P., McMillan, M. and Joughin, I.. 2009. Greenland ice sheet motion coupled with daily melting in late summer. Geophys. Res. Lett., 36(1), L01501. (10.1029/2008GL035758.)
Smith, L.C., Sheng, Y., Forster, R.R., Steffen, K., Frey, K.E. and Alsdorf, D.E.. 2003. Melting of small Arctic ice caps observed from ERS scatterometer time-series. Geophys. Res. Lett., 30(20), 2034. (10.1029/2003GL017641.)
Syvitski, J.P.M., Asprey, K.W., Clattenburg, D.A. and Hodge, G.D.. 1985. The prodelta environment of a fjord: suspended particle dynamics. Sedimentology, 32(1), 83107.
Tedesco, M. 2007. Snowmelt detection over the Greenland ice sheet from SSM/I brightness temperature daily variations. Geophys. Res. Lett., 34(2), L02504. (10.1029/2006GL028466.)
Thomas, R.H., Abdalati, W., Frederick, E., Krabill, W.B., Manizade, S. and Steffen, K.. 2003. Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ, Greenland. J. Glaciol., 49(165), 231239.
Van de Wal, R.S.W. and 6 others. 2008. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science, 321(5885), 111113.
Vermote, E.F., El Saleous, N.Z. and Justice, C.O.. 2002. Atmoshperic corrections of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ., 83(1–2), 97-111.
Walsh, J.E. and 11 others. 2005. Cryosphere and hydrology. In Arctic Climate Impact Assessment – scientific report. Cambridge, Cambridge University Press, 183242.
Willis, I.C., Richards, K.S. and Sharp, M.J.. 1996. Links between proglacial stream suspended sediment dynamics, glacier hydrology and glacier motion at Midtdalsbreen, Norway. Hydrol. Process., 10(4), 629648.
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. and Steffen, K.. 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222.
Zwally, H.J. and 7 others. 2005. Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed