Skip to main content
×
×
Home

A sedimentological and isotopic study of the origin of supraglacial debris bands: Kongsfjorden, Svalbard

  • Bryn Hubbard (a1), Neil Glasser (a1), Michael Hambrey (a1) and James Etienne (a1)
Abstract
Abstract

Debris bands associated with supraglacial moraines and associated basal deposits have been logged and sampled for their ice and debris at three glaciers in northwest Spitsbergen, Svalbard. Physical properties, including sediment concentrations, sediment particle-size distributions, clast macro-fabrics, and oxygen isotope compositions, indicate that all transverse and some longitudinal debris bands originate from the basal zone of these glaciers. Transverse supraglacial bands are composed of extensive stratified-facies basal ice that is enriched in 18O and which contains polymodal debris with spatially consistent clast fabrics. These properties suggest initial formation as basal ice and subsequent elevation into an englacial position by thrusting rather than formation as crevasse fills. The formation of longitudinal debris bands results from laterally compressive folding in response to the convergence of multiple flow units into a narrow glacier tongue. In common with transverse debris bands, longitudinal bands appear to be composed of stratified basal ice. The bands exposed at the surface of austre Brøggerbreen comprise two subfacies, strongly suggesting that the glacier was at least partially warm-based in the past, when the basal ice formed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A sedimentological and isotopic study of the origin of supraglacial debris bands: Kongsfjorden, Svalbard
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A sedimentological and isotopic study of the origin of supraglacial debris bands: Kongsfjorden, Svalbard
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A sedimentological and isotopic study of the origin of supraglacial debris bands: Kongsfjorden, Svalbard
      Available formats
      ×
Copyright
References
Hide All
Alley R. B., Cuffey K. M., Evenson E. B., Strasser J. C., Lawson D. E. and Larson. G. J. 1997. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 107-1038.
Alley R. B., Lawson D. E., Evenson E. B., Strasser J. C. and Larson. G. J. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. II. Theory. J. Glaciol., 44(148), 563-569.
Alley R. B., Strasser J. C., Lawson D. E., Evenson E. B. and Larson. G. J. 1999. Some glaciological and geological implications of basal-ice accretion in an overdeepening. In Mickelson D. M. and Attig J. W, eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 19. (Special Paper 337.)
Andrews J.T. 1970. Techniques of tillfabric analysis. Norwich, Geo Abstracts, British Geomorphological Research Group. (BGRG Technical Bulletin 6.)
Benn D. I. and Gemmell. A. M. D. 2002. Fractal dimensions of diamictic particle-size distribution: simulations and evaluation. Geol. Soc. Am. Bull., 114(5), 528-532.
Bennett M. R., Hambrey M.J., Huddart D. and Ghienne. J. F. 1996. The formation of a geometrical ridge network by the surge-type glacier Kongsvegen, Svalbard. J. Quat. Sci., 11 (6), 437-449.
Björnsson H. and 6 others. 1996. The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol., 42(140), 23-32.
Boulton G. S. and Dent. D. L. 1974. The nature and rates of post-depositional changes in recently deposited till from south-east Iceland. Geogr. Ann., 56A(3-4), 121-134.
Ensminger S. L., Alley R. B., Evenson E. B., Lawson D. E. and Larson. G. J. 2001. Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A. J. Glaciol., 47(158), 412-422.
Evans D. J. A. and Rea. B. R. 1999. Geomorphology and sedimentology of surging glaciers: a land-systems approach. Ann. Glaciol., 28, 75-82.
Fischer U. H. and Hubbard. B. 1999. Subglacial sediment textures: character and evolution at Haut Glacier dArolla, Switzerland. Ann. Glaciol., 28, 241-246.
Glasser N. F. and Hambrey. M. J. 2001. Styles of sedimentation beneath Svalbard valley glaciers under changing dynamic and thermal regimes. J. Geol. Soc. London, 158(4), 697-707.
Glasser N. F., Hambrey M.J., Crawford K. R., Bennett M. R. and Hud-dart D.. 1998. The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis. J. Glaciol., 44(146), 136-148. (Erratum: 46(154), 2000, p. 538.)
Goldthwait R. P. 1951. Development of end moraines in east-central Baffin Island. J. Geol., 59(6), 567-577.
Hagen J. O. and Sætrang. A. 1991. Radio-echo soundings of sub-polar glaciers with low-frequency radar. PolarRes., 9(1), 99-107.
Hagen J. O., Korsen O. M. and Vatne. G. 1991a. Drainage pattern in a subpolar glacier: Brøggerbreen, Svalbard. In Gjessing Y, Hagen J. O., Hassel K. A., Sand K. and Wold B., eds. Arctic hydrology: present andfuture tasks. Hydrology of Svalbard—hydrological problems in a cold climate. Oslo, Norwegian National Committee for Hydrology, 121-131. (Report 23.)
Hagen J. O., Lefauconnier B. and Liestol. O. 1991b. Glacier massbalancein Svalbard since 1912. International Association of Hydrological Sciences Publication 208, (Symposium at St Petersburg 1990 — Glaciers—Ocean—Atmosphere Interactions), 313-328.
Hambrey M.J. and Glasser. N. F. 2003. The role of folding and foliation development in the genesis of medial moraines: examples from Svalbard glaciers. J. Geol., 111 (4), 471-485.
Hambrey M.J., Bennett M.R., Dowdeswell J.A., Glasser N.F. and Huddart. D. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45(149), 69-86.
Hooke R. LeB. and Iverson. N. R. 1995. Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology, 23(1), 57-60.
Hubbard B. and Sharp. M. 1989. Basal ice formation and deformation: a review. Prog. Phys. Geogr., 13(4), 529-558.
Hubbard B. and Sharp. M. 1993. Weertman regelation, multiple refreezing events and the isotopic evolution of the basal ice layer. J. Glaciol., 39 (132), 275-291.
Hubbard B. and Sharp. M. 1995. Basal ice facies and their formation in the western Alps. Arct. Alp. Res., 27(4), 301-310.
Hubbard B., Sharp M. and Lawson. W.J. 1996. On the sedimentological character of Alpine basal ice facies. Ann. Glaciol., 22, 187-193.
Jouzel J. and Souchez. R. A. 1982. Melting—refreezing at the glacier sole and the isotopic composition of the ice. J. Glaciol., 28(98), 35-42.
Kamb B. and LaChapelle. E. 1963. Direct observations of the mechanism of glacier sliding over bedrock. J. Glaciol., 5(38), 159-172.
Khatwa A., Hart J. K. and Payne. A. J. 1999. Grain textural analysis across a range of glacial facies. Ann. Glaciol., 28, 111-117.
Knight P G. 1997. The basal ice layer of glaciers and ice sheets. Quat. Sci. Rev., 16 (9), 975-993.
Knight P. G. and Knight. D. A. 1994. Correspondence. Glacier sliding, regelation water flow and development of basal ice. J. Glaciol., 40(136), 600-601.
Lawson D. E. 1979a. A comparison of the pebble orientations in ice and deposits of the Matanuska Glacier, Alaska. J. Geol., 87(6), 629-645.
Lawson D. E. 1979b. Sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. CRREL Rep.,79-9.
Lawson D. E. and Kulla. J. B. 1978. An oxygen isotope investigation of the origin of the basal zone of the Matanuska Glacier, Alaska. J. Geol., 86 (6), 673-685.
Lawson D. E., Strasser J. C., Evenson E. B., Alley R. B., Larson G. J. and Arcone. S. A. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. I. Field evidence. J. Glaciol., 44(148), 547-562.
Liestøl O. 1988. The glaciers in the Kongsfjorden area, Spitsbergen. Nor. Geogr. Tidsskr, 42(4), 231-238.
Macheret Yu.Ya. and Zhiravlev. A. B. 1982. Radio echo-sounding of Svalbard glaciers. J. Glaciol. 28(99), 295-314.
Mickelson D. M. and Berkson. J. M. 1974. Till ridges presently forming above and below sea level inWachusett Inlet, Glacier Bay, Alaska. Geogr. Ann., 56A(1-2), 111-119.
O’Neil J. R. 1968. Hydrogen and oxygen isotope fractionation between ice and water. J. Phys. Chem., 72(10), 3683-3684.
Robin G. de Q. 1976. Is the basal ice of a temperate glacier at the pressure melting point? J. Glaciol., 16(74), 183-196.
Sammis C., King G. and Biegel R.. 1987. The kinematics of gouge deformation. Pure and Applied Geophysics (PAGEOPH), 125 (5), 777-812.
Sharp M. 1985. Crevasse-fill ridges — a landform type characteristic of surging glaciers? Geogr. Ann., 67A(3-4), 213-220.
Souchez R. A. and Jouzel J.. 1984. On the isotopic composition in δD and δ18O of water and ice during freezing. J. Glaciol., 30(106), 369-372.
Tison J.-L., Souchez R. and Lorrain R.. 1989. On the incorporation of un- consolidated sediments in basal ice: present-day examples. Z Geomor- phol.Suppl., 72, 173-183.
Weertman J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. J. Glaciol., 3(30), 965-978.
Weertman J. 1964. The theory of glacier sliding. J. Glaciol., 5(39), 287-303.
Woodward J., Murray T. and McCaig A.. 2002. Formation and reorientation of structure in the surge-type glacier Kongsvegen, Svalbard. J. Quat. Sci., 17(3), 201-209.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 16 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 16th January 2018. This data will be updated every 24 hours.