Skip to main content Accessibility help
×
Home

Seismicity and deformation associated with ice-shelf rift propagation

  • Jeremy N. Bassis (a1), Helen A. Fricker (a1), Richard Coleman (a2) (a3) (a4), Yehuda Bock (a1), James Behrens (a1), Dennis Darnell (a1), Marianne Okal (a1) and Jean-Bernard Minster (a1)...

Abstract

Previous observations have shown that rift propagation on the Amery Ice Shelf (AIS), East Antarctica, is episodic, occurring in bursts of several hours with typical recurrence times of several weeks. Propagation events were deduced from seismic swarms (detected with seismometers) concurrent with rapid rift widening (detected with GPS receivers). In this study, we extend these results by deploying seismometers and GPS receivers in a dense network around the tip of a propagating rift on the AIS over three field seasons (2002/03, 2004/05 and 2005/06). The pattern of seismic event locations shows that icequakes cluster along the rift axis, extending several kilometers back from where the rift tip was visible in the field. Patterns of icequake event locations also appear aligned with the ice-shelf flow direction, along transverse-to-rift crevasses. However, we found some key differences in the seismicity between field seasons. Both the number of swarms and the number of events within each swarm decreased during the final field season. The timing of the slowdown closely corresponds to the rift tip entering a suture zone, formed where two ice streams merge upstream. Beneath the suture zone lies a thick band of marine ice. We propose two hypotheses for the observed slowdown: (1) defects within the ice in the suture zone cause a reduction in stress concentration ahead of the rift tip; (2) increased marine ice thickness in the rift path slows propagation. We show that the size–frequency distribution of icequakes approximately follows a power law, similar to the well-known Gutenberg–Richter law for earthquakes. However, large icequakes are not preceded by foreshocks nor are they followed by aftershocks. Thus rift-related seismicity differs from the classic foreshock and aftershock distribution that is characteristic of large earth quakes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Seismicity and deformation associated with ice-shelf rift propagation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Seismicity and deformation associated with ice-shelf rift propagation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Seismicity and deformation associated with ice-shelf rift propagation
      Available formats
      ×

Copyright

References

Hide All
Atkinson, B.K. and Meredith, P.. 1987. The theory of subcritical crack growth with application to minerals and rocks. In Atkinson, B.K., ed. Fracture mechanics of rock . London, etc., Academic Press, 111166.
Baer, M. and Kradolfer, U.. 1987. An automatic phase picker for local and teleseismic events. Bull. Seismol. Soc. Am., 77(4), 14371445.
Barenblatt, G.I. 1959. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses, axially symmetric cracks. J. Appl. Math. Mech., 23(3), 622636.
Bassis, J.N. Coleman, R. Fricker, H.A. and J.B. Minster. 2005. Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica. Geophys. Res. Lett., 32(6), L06502. (10.1029/2004GL022048.).
Benn, D.I. Charles, W. and Mottram, R.H.. 2007. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(34).
Bock, Y. Nikolaidis, R. de Jonge, P.J. and Bevis, M.. 2000. Instantaneous geodetic positioning at medium distances with the Global Positioning System. J. Geophys. Res., 105(B12), 28,22328,254.
Budd, W. 1966. The dynamics of the Amery Ice Shelf. J. Glaciol., 6(45), 335358.
Dugdale, D.S. 1960. Yielding of steel sheets containing silts. J. Mech. Phys. Solids, 8(2), 100104.
Floyd, J.S. Tolstoy, M. Mutter, J.C. and C.H. Scholz. 2002. Seismotectonics of mid-ocean ridge propagation in Deep Hess. Science, 298(5599), 17651768.
Fricker, H.A. Young, N.W. Allison, I. and Coleman, R.. 2002. Iceberg calving from the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 34, 241246.
Fricker, H.A. Bassis, J.N. Minster, B. and D.R. MacAyeal. 2005. ICESat’s new perspective on ice shelf rifts: the vertical dimension. Geophys. Res. Lett., 32(23), L23S08. (10.1029/ 2005GL025070.)
Fricker, H.A. Young, N.W. Coleman, R. Bassis, J.N. and J.B. Minster. 2007. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophys. Res. Lett., 32(2), L02502. (10.1029/2004GL021036.)
Hemer, M.A. Hunter, J.R. and Coleman, R.. 2006. Barotropic tides beneath the Amery Ice Shelf. J. Geophys. Res., 111(C11), C11008. (10.1029/2006JC003622.)
Joughin, I. and Padman, L.. 2003. Melting and freezing beneath Filchner–Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 30(9), 14771480. (10.1029/2003GL016941.)
Larour, E. Rignot, E. and D. Aubry. 2004. Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophys. Res. Lett., 31(16), L16404. (10.1029/ 2004GL020077.)
Lawn, B.R. 1993. Fracture of brittle solids. Second edition. Cambridge, etc., Cambridge University Press.
Lazzara, M.A. Jezek, K.C. Scambos, T.A. MacAyeal, D.R. and C.J. van der Veen. 1999. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr., 23(3), 201212.
Lockner, D.A. Byerlee, J.D. Kuksenko, V. Ponomarev, A. and Sidorin, A.. 1992. Observations of quasistatic fault growth from acoustic emissions. In Evans, B., T. Wong and W.F. Brace, eds. Fault mechanics and transport properties of rocks: a festschrift in honour of W.F. Brace . London, Academic Press, 331.
Malvern, L.E. 1969. Introduction to the mechanics of a continuous medium. Englewood Cliffs, NJ, Prentice-Hall.
Mattia, M. Rossi, M. Guglielmino, F. Aloisi, M. and Y. Bock. 2004. The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys. Res. Lett., 31(24), L24610. (10.1029/2004GL021281.)
McMahon, K.L. and Lackie, M.A.. 2006. Seismic reflection studies of the Amery Ice Shelf, East Antarctica: delineating meteoric and marine ice. Geophys. J. Int., 166(2), 757766.
Nikolaidis, R.M. Bock, Y. PJ. De Jonge, P. Shearer, D.C. Agnew and M. van Domselaar. 2001. Seismic wave observations with the Global Positioning System. J. Geophys. Res., 106(B10), 21,89721,916.
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Rignot, E. and Jacobs, S.S.. 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 20202023.
Rignot, E. and Thomas, R.H.. 2002. Mass balance of polar ice sheets. Science, 297(5586), 15021506.
Rist, M.A. Sammonds, P.R. Oerter, H. and C.S.M. Doake. 2002. Fracture of Antarctic shelf ice. J. Geophys. Res., 107(B1). (10.1029/2000JB000058.)
Scambos, T. Hulbe, C. and Fahnestock, M.. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack, E.W., A. Burnett, A. Leventer, P. Conley, M. Kirby and R. Bind-schadler, eds. Antarctic Peninsula climate variability: a historical and paleoenvironmental perspective . Washington, DC, American Geophysical Union, 7992. (Antarctic Research Series 79.)
Schroeder, W.J. and Shephard, M.S.. 1988. Geometry-based fully automatic mesh generation and the Delaunay triangulation. Int. J. Num. Meth. Eng., 26(11), 25032515.
Shearer, P.M. 1997. Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence. J. Geophys. Res., 102(B4), 82698283.
Shearer, P.M. 1999. Introduction to seismology. Cambridge, etc., Cambridge University Press.
Shimazaki, K. and Nakata, T.. 1980. Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett., 7(4), 279282.
Stuart, G. Murray, T. Brisbourne, A. Styles, P. and S. Toon. 2005. Seismic emissions from a surging glacier: Bakaninbreen, Svalbard. Ann. Glaciol., 42, 151157.
Taylor, J.R. 1997. An introduction to error analysis: the study of uncertainties in measurements physical. Second edition. Sausalito, CA, University Science Books.
Weiss, J. 2004. Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving. J. Glaciol., 50(168), 109115.
Withers, M. and 6 others. 1998. A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull. Seismol. Soc. Am., 88(1), 9596.
Young, N.W. and Hyland, G.. 2002. Velocity and strain rates derived from InSAR analysis over the Amery Ice Shelf, East Antarctica. Ann. Glaciol., 34, 228234.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed