Skip to main content

A short history of the thermomechanical theory and modeling of glaciers and ice sheets

  • Heinz Blatter (a1), Ralf Greve (a2) and Ayako Abe-Ouchi (a3)

Observations of glacier flow and explanations of its origin started as early as the 18th century. Several mechanisms were suggested before gravity-driven viscous flow became the accepted theory of glacier flow in the 1950s, the early years of the Journal of Glaciology. Since the viscosity of ice is strongly temperature-dependent, the topic of glacier and ice-sheet dynamics became essentially a fluid-dynamical problem. The availability of growing computing power turned the field of glacier mechanics and thermodynamics into a field of numerical modelling with increasing sophistication.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A short history of the thermomechanical theory and modeling of glaciers and ice sheets
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      A short history of the thermomechanical theory and modeling of glaciers and ice sheets
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      A short history of the thermomechanical theory and modeling of glaciers and ice sheets
      Available formats
Hide All
Aschwanden A. and Blatter H.. 2005. Meltwater production due to strain heating in Storglaciaren, Sweden. J. Geophys. Res., 110(F4), F04024. (10.1029/2005JF000328.)
Bader H. 1950. The significance of air bubbles in glacier ice. J. Glaciol., 1(8), 443-451.
Blatter H. 1995. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138), 333-344.
Böhmer W.J. and Herterich K.. 1990. A simplified three-dimensional ice-sheet model including ice shelves. Ann. Glaciol., 14, 17-19.
Budd W.F. and Jenssen D.. 1975. Numerical modelling of glacier systems. IASH Publ. 104 (Symposium at Moscow 1971 – Snow and Ice), 257-291.
Budd W.F. and Smith I.N.. 1981. The growth and retreat of ice sheets in response to orbital radiation changes. IASH Publ. 131 (Symposium at Canberra 1979 - Sea Level, Ice and Climatic Change), 369-409.
Budd W.F. and Smith I.N.. 1982. Large-scale numerical modelling of the Antarctic ice sheet, Ann. Glaciol., 3, 42-49.
Budd W.F., Jenssen D. and Smith I.N.. 1984. A three-dimensional time-dependent model of the West Antarctic ice sheet, Ann. Glaciol., 5, 29-36.
Bueler E. and Brown J.. 2009. Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. J. Geophys. Res., 114(F3), F03008. (10.1029/2008JF001179.)
Bueler E., Brown J. and Lingle C.. 2007. Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification. J. Glaciol., 53(182), 499-516.
Bueler E., Lingle C.S., Kallen-Brown J.A., Covey D.N. and Bowman L.N.. 2005. Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol., 51(173), 291306.
Calov R. and Hutter K.. 1996. The thermomechanical response of the Greenland ice sheet to various climate scenarios. Climate Dyn., 12(4), 243-260.
Calov R. and 10 others. 2010. Results from the Ice-Sheet Model Intercomparison Project – Heinrich Event INtercOmparison (ISMIP HEINO). J. Glaciol., 56(197), 371-383.
Campbell W.J. and Rasmussen L.A.. 1969. Three-dimensional surges and recoveries in a numerical glacier model. Can. J. Earth Sci., 6(4), 979-986.
Campbell W.J. and Rasmussen L.A.. 1970. A heuristic numerical model for three-dimensional time-dependent glacier flow. IASH Publ. 86 (Symposium at Hanover, New Hampshire 1968 - Antarctic Glaciological Exploration (ISAGE)), 177-190.
Clarke G.K.C. 1987. A short history of scientific investigations on glaciers. J. Glaciol., Special Issue, 4-24.
Demorest M. 1942. Glacier regimes and ice movements within glaciers. Am. J. Sci., 240(1), 31-66.
Gerrard J.A.F., Perutz M.F. and Roch A.. 1952. Measurement of the velocity distribution along a vertical line through a glacier. Proc. R. Soc. London, Ser. A, 213(1115), 546-558.
Glen J.W. 1952. Experiments on the deformation of ice. J. Glaciol., 2(12), 111-114.
Greve R. 1997. A continuum-mechanical formulation for shallow polythermal ice sheets. Philos. Trans. R. Soc. London, Ser. A, 355(1726), 921-974.
Greve R. and Blatter H.. 2009. Dynamics of ice sheets and glaciers. Berlin, etc., Springer.
Gudmundsson G.H., 1999. A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland, J. Glaciol., 45(150), 219-230.
Haefeli R. 1951. Some observations on glacier flow. J. Glaciol., 1(9), 496-500.
Haefeli R. 1952. Observations on the quasi-viscous behaviour of ice in a tunnel in the Z’Mutt Glacier. J. Glaciol., 2(12), 94-99.
Haefeli R. and Kasser P.. 1951. Geschwindigkeitsverhaltnisse und Verformungen in einem Eisstollen des Z’Muttgletschers: Beitrag zum Studium der Gletscherbewegung. IASH Publ. 32 (Assemble Generale de Bruxelles 1951 – Neige et Glaciers), Tome 1, 222-236.
Halfar P. 1981. On the dynamics of the ice sheets. J. Geophys. Res., 86(C11), 11,065-11,072.
Halfar P. 1983. On the dynamics of the ice sheets 2. J. Geophys. Res., 88(C10), 6043-6051.
Herterich K. 1988. A three-dimensional model of the Antarctic ice sheet. Ann. Glaciol., 11, 32-35.
Herterich K. 1990. Modellierung eiszeitlicher Klimaschwankun- gen. (Habilitationsschrift im Fachgebiet Meteorologie, Universität Hamburg.)
Hindmarsh R.C.A. and Hutter K.. 1988. Numerical fixed domain mapping solution of free-surface flows coupled with an evolving interior field. Int. J. Num. Anal. Meth. Geomech., 12(4), 437-459.
Hutter K. 1983. Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. Dordrecht, etc., D. Reidel Publishing Co./Tokyo, Terra Scientific Publishing Co.
Hutter K., Legerer F. and Spring U.. 1981. First-order stresses and deformations in glaciers and ice sheets. J. Glaciol., 27(96), 227-270.
Huybrechts P. 1990a. A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn., 5(2), 79-92.
Huybrechts P. 1990b. The Antarctic ice sheet during the last glacial-interglacial cycle: a three-dimensional experiment. Ann. Glaciol., 14, 115-119.
Huybrechts P. and Oerlemans J.. 1988. Evolution of the East Antarctic ice sheet: a numerical study of thermo-mechanical response patterns with changing climate. Ann. Glaciol., 11, 52-59.
Huybrechts P., Payne T. and the EISMINT Intercomparison Group. 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 1-12.
Jenssen D. 1977. A three-dimensional polar ice-sheet model. J. Glaciol., 18(80), 373-389.
Jenssen D. and Radok U., 1961. Transient temperature distributions in ice caps and ice shelves. IASH Publ. 55 (General Assembly of Helsinki 1960 - Antarctic Glaciology), 112-122.
Jouvet G., Picasso M., Rappaz J. and Blatter H.. 2008. A new algorithm to simulate the dynamics of a glacier: theory and applications. J. Glaciol., 54(188), 801-811.
Jouvet G., Huss M., Blatter H., Picasso M. and Rappaz J.. 2009. Numerical simulation of Rhonegletscher from 1874 to 2100. J. Comput. Phys., 228(17), 6426-6439.
Kuhle M., Herterich K. and Calov R.. 1989. On the Ice Age glaciation of the Tibetan Highlands and its transformation into a 3-D model. GeoJournal, 19(2), 201-206.
Kuhn B.F. 1787. Versuch uber den Mechanismus der Gletscher. Mag. Naturkunde Helvetiens, 1, 117-136.
Letréguilly A., Reeh N. and Huybrechts P.. 1991a. The Greenland ice sheet through the last glacial-interglacial cycle. Global Planet. Change, 90(4), 385-394.
Letréguilly A., Huybrechts P. and Reeh N.. 1991b. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol., 37(125), 149-157.
Lliboutry L. and Reynaud L.. 1981. ‘Global dynamics’ of a temperate valley glacier, Mer de Glace, and past velocities deduced from Forbes’ bands. J. Glaciol., 27(96), 207-226.
Luthi M. and Funk M.. 2000. Dating of ice cores from a high Alpine glacier with a flow model for cold firn. Ann. Glaciol., 31, 69-79.
Mahaffy M.W. 1976. A three-dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81(6), 1059-1066.
McCall J.G. 1952. The internal structure of a cirque glacier. Report on studies of the englacial movements and temperatures. J. Glaciol., 2(12), 122-131.
Mercanton P.L., ed. 1916. Vermessungen am Rhonegletscher/ Mensuration au glacier du Rhone: 1874-1915. Neue Denkschr. Schweiz. Naturforsch. Ges., 52.
Morland L.W. 1984. Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dyn., 29(1-4), 237-266.
Morland L.W. 1987. Unconfined ice-shelf flow. In Van der Veen C.J. and Oerlemans J., eds. Dynamics of the West Antarctic ice sheet. Dordrecht, etc., D. Reidel Publishing Co., 99-116.
Nye J.F. 1951b. The flow of glaciers and ice-sheets as a problem in plasticity. Proc. R. Soc. London, Ser. A, 207(1091), 554-572.
Nye J.F. 1952a. A comparison between the theoretical and the measured long profile of the Unteraar glacier. J. Glaciol., 2(12), 103-107.
Nye J.F. 1952b. The mechanics of glacier flow. J. Glaciol., 2(12), 82-93.
Nye J.F. 1952c. A method of calculating the thickness of ice sheets. Nature, 169(4300), 529-530.
Nye J.F. 1953. The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc. R. Soc. London, Ser. A, 219(1139), 477-489.
Nye J.F. 1958. Surges in glaciers. Nature, 181(4621), 1450-1451.
Nye J.F. 1959a. The deformation of a glacier below an ice fall. J. Glaciol., 3(25), 387-408.
Nye J.F. 1959b. A method of determining the strain-rate tensor at the surface of a glacier. J. Glaciol., 3(25), 409-419.
Nye J.F. 1959c. The motion of ice sheets and glaciers. J. Glaciol., 3(26), 493-507.
Nye J.F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. London, Ser. A, 256(1287), 559-584.
Nye J.F. 1963. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol., 4(36), 785-788.
Nye J.F. 1965a. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. J. Glaciol., 5(41), 661-690.
Nye J.F. 1965b. The frequency response of glaciers. J. Glaciol., 5(41), 567-587.
Nye J.F. 1969a. A calculation on the sliding of ice over a wavy surface using a Newtonian viscous approximation. Proc. R. Soc. London, Ser. A, 311(1506), 445-467.
Nye J.F. 1969b. The effect of longitudinal stress on the shear stress at the base of an ice sheet. J. Glaciol., 8(53), 207-213.
Nye J.F. 1970. Glacier sliding without cavitation in a linear viscous approximation. Proc. R. Soc. London, Ser. A, 315(1522), 381-403.
Oerlemans J. 1982a. Glacial cycles and ice-sheet modeling. Climatic Change, 4(4), 353-374.
Oerlemans J. 1982b. A model of the Antarctic ice sheet. Nature, 297(5867), 550-553.
Oerlemans J. 1982c. Response of the Antarctic ice sheet to a climate warming: a model study. J. Climatol., 2(1), 1-11.
Oerlemans J. 1983. A numerical study on cyclic behaviour of polar ice sheets. Tellus, 35A(2), 81-87.
Pattyn F. 2003. A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382. (10.1029/2002JB002329.)
Pattyn F. 2008. Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol., 54(185), 353-361.
Pattyn F. and 20 others. 2008. Benchmark experiments for higher- order and full-Stokes ice sheet models (ISMIP-HOM). Cryo- sphere, 2(2), 95-108.
Payne A.J. and 10 others. 2000. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 46(153), 227-238.
Perutz M.F. 1950a. Direct measurement of the velocity distribution in a vertical profile through a glacier. J. Glaciol., 1(7), 382-383.
Perutz M.F. 1950b. Glaciology: the flow of glaciers. Observatory, 70(855), 63-69.
Rasmussen L.A. and Campbell W.J.. 1973. Comparison of three contemporary flow laws in a three-dimensional, time-dependent glacier model. J. Glaciol., 12(66), 361-373.
Robin G.deQ. 1955. Ice movement and temperature distribution in glaciers and ice sheets. J. Glaciol., 2(18), 523-532.
Röthlisberger H. 1955. Studies in glacier physics on the Penny Ice Cap, Baffin Island, 1953. Part III: Seismic sounding. J. Glaciol., 2(18), 539-552.
Röthlisberger H. 1987. B.F. Kuhns Beitrag zur Gletscherkunde vor 200 Jahren. Geogr. Helv., 42(2), 147-152.
Rutt I.C., Hagdorn M., Hulton N.R.J. and Payne A.J.. 2009. The Glimmer community ice sheet model. J. Geophys. Res., 114(F2), F02004. (10.1029/2008JF001015.)
Saito F., Abe-Ouchi A. and Blatter H.. 2003. Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical coupled model. Ann. Glaciol., 37, 166-172.
Saito F., A. Abe-Ouchi and Blatter H.. 2006. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. J. Geophys. Res., 111 (F2), F02012. (10.1029/2004JF000273.)
Vialov S.S. 1958. Regularities of glacial shields movement and the theory of plastic viscous flow. IASH Publ. 47 (Symposium at Chamonix 1958 – Physics of the Movement of the Ice), 266-275.
Waddington E. 2010. Life, death and afterlife of the extrusion flow theory. J. Glaciol., 56(200): 973-996.
Weertman J. 1961. Equilibrium profile of ice caps. J. Glaciol., 3(30), 953-964.
Zwinger T., Greve R., Gagliardini O., Shiraiwa T. and Lyly M.. 2007. A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45, 29-37.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 4 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 23rd November 2017. This data will be updated every 24 hours.