Skip to main content
×
×
Home

Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice

  • Hakime Seddik (a1), Ralf Greve (a1), Thomas Zwinger (a2), Fabien Gillet-Chaulet (a3) and Olivier Gagliardini (a3) (a4)...
Abstract

It is likely that climate change will have a significant impact on the mass balance of the Greenland ice sheet, contributing to future sea-level rise. Here we present the implementation of the full Stokes model Elmer/Ice for the Greenland ice sheet, which includes a mesh refinement technique in order to resolve fast-flowing ice streams and outlet glaciers. We discuss simulations 100 years into the future, forced by scenarios defined by the SeaRISE (Sea-level Response to Ice Sheet Evolution) community effort. For comparison, the same experiments are also run with the shallow-ice model SICOPOLIS (SImulation COde for POLythermal Ice Sheets). We find that Elmer/Ice is ~43% more sensitive (exhibits a larger loss of ice-sheet volume relative to the control run) than SICOPOLIS for the ice-dynamic scenario (doubled basal sliding), but ~61 % less sensitive for the direct global warming scenario (based on the A1 B moderate-emission scenario for greenhouse gases). The scenario with combined A1B global warming and doubled basal sliding forcing produces a Greenland contribution to sea-level rise of ~15cm for Elmer/Ice and ~12cm for SICOPOLIS over the next 100 years.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice
      Available formats
      ×
Copyright
References
Hide All
Amestoy, PR, Duff, IS, L’Excellent, J-Y and Koster, J (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM j. Matrix Anal. Appl., 23(1), 15-41 (doi: 10.1137/S0895479899358194)
Amestoy, PR, Guermouche, A, L’Excellent, J-Y and Pralet, S (2006) Hybrid scheduling for the parallel solution of linear systems. Parallel Comput., 32(2), 136-156 (doi: 10.1016/j.parco.2005.07.004)
Bamber, JL, Ekholm, S and Krabill, WB (2001a) A new, high- resolution digital elevation model of Greenland fully validated with airborne laser altimeter data. j. Geophys. Res., 106(B4), 6733-6745 (doi: 10.1029/2000JB900365)
Bamber, JL, Layberry, RL and Gogineni, SP (2001b) A new ice thickness and bed data set for the Greenland ice sheet. 1. Measurement, data reduction, and errors. j. Geophys. Res., 106(D24), 33 773-33 780
Baral, D, Hutter, K and Greve, R (2001) Asymptotic theories of large-scale motion, temperature and moisture distribution in land-based polythermal ice sheets: a critical review and new developments. Appl. Mech. Rev., 54(3), 215-256 (doi: 10.1115/1.3097296)
Blatter, H (1995) Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. j. Glaciol., 41(138), 333-344
Bueler, E and Brown, J (2009) Shallow shelf approximation as a ‘sliding law’ in a thermomechanically coupled ice sheet model. j. Geophys. Res., 114(F3), F03008 (doi: 10.1029/2008JF001179)
Calov, R (1994) Das thermomechanische Verhalten des Gronlandischen Eisschildes unter der Wirkung verschiedener Klimaszenarien− Antworten eines theoretisch-numerischen Modells. (PhD thesis, Technische Hochschule, Darmstadt)
Calov, R and Greve, R (2005) Correspondence. A semi-analytical solution for the positive degree-day model with stochastic temperature variations. j. Glaciol., 51 (172), 173-175
Calov, R and Hutter, K (1996) The thermomechanical response of the Greenland ice sheet to various climate scenarios. Climate Dyn., 12(4), 243-260
Colinge, J and Blatter, H (1998) Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models. j. Glaciol., 44(148), 448-456
Dahl-Jensen, D (1989) Steady thermomechanical flow along twodimensional flow lines in large grounded ice sheets. j. Geophys. Res., 94(B8), 10 355-10 362
Dahl-Jensen, D and 6 others (1998) Past temperatures directly from the Greenland ice sheet. Science, 282(5387), 268-271
Dahl-Jensen, D, Gundestrup, N, Gogineni, SP and Miller, H (2003) Basal melt at NorthGRIP modeled from borehole, ice-core and radio-echo sounder observations. Ann. Glaciol., 37, 207-212 (doi: 10.3189/172756403781815492)
Dansgaard, W, Johnsen, SJ, Moller, J and Langway, CC Jr (1969) One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science, 166(3903), 377-381
Dansgaard, W and 10 others (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218-220
Durand, G, Gagliardini, O, Zwinger, T, Le Meur, E and Hind-marsh, RCA (2009) Full Stokes modeling of marine ice sheets: influence of the grid size. Ann. Glaciol., 50(52), 109-114 (doi: 10.3189/172756409789624283)
Ettema, J and 6 others (2009) Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modelling. Geophys. Res. Lett., 36(12), L12501 (doi: 10.1029/2009GL038110)
Fausto, RS, Ahlstrom, AP, Van As, D, Boggild, CE and Johnsen, SJ (2009) A new present-day temperature parameterization for Greenland. j. Glaciol., 55(189), 95-105 (doi: 10.3189/ 002214309788608985)
Franca, LP and Frey, SL (1992) Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng., 99(2-3), 209-233
Franca, LP, Frey, SL and Hughes, TJR (1992) Stabilized finite element methods: I. Comput. Meth. Appl. Mech. Eng., 95(2), 253-276 (doi: 10.1016/0045-7825(92)90143-8)
Frey, PJ (2001) YAMS, a fully automatic adaptive isotropic surface remeshing procedure. Institut National de Recherche en Informa- tiqueet Automatique, Rocquencourt (INRIATech. NoteRT-0252)
Frey, PJ and Alauzet, F (2005) Anisotropic mesh adaptation for CFD computations. Comput. Meth. Appl. Mech. Eng., 194(48-49), 5068-5082 (doi: 10.1016/j.cma.2004.11.025)
Gagliardini, O and Zwinger, T (2008) The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. Cryosphere, 2(1), 67-76
Greve, R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. j. Climate, 10(5), 901-918
Greve, R (2000) On the response of the Greenland ice sheet to greenhouse climate change. Climatic Change, 46(3), 289-303
Greve, R (2005) Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Ann. Glaciol., 42(1), 424-432 (doi: 10.3189/172756405781812510)
Greve, R and Blatter, H (2009) Dynamics of ice sheets and glaciers. Springer-Verlag, Dordrecht
Greve, R, Weis, M and Hutter, K (1998) Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of Summit: an approach by large-scale modelling. Palaeoclimates, 2(2-3), 133-161
Greve, R, Saito, F and Abe-Ouchi, A (2011) Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Ann. Glaciol., 52(58), 23-30 (doi: 10.3189/172756411797252068)
Gudmundsson, GH (1999) A three-dimensional numerical model of the confluence area of Unteraargletscher, Bernese Alps, Switzerland. J. Glaciol., 45(150), 219-230
Gundestrup, NS and Hansen, BL (1984) Bore-hole survey at Dye 3, south Greenland. J. Glaciol., 30(106), 282-288
Gundestrup, NS, Clausen, HB, Hansen, BL and Rand, J (1987) Camp Century survey 1986. Cold Reg. Sci. Technol., 14(3), 281-288
Gundestrup, N, Dahl-Jensen, D, Hansen, BL and Kelty, J (1993) Borehole survey at Camp Century, 1989. Cold Reg. Sci. Technol., 21(2), 187-193
Hindmarsh, RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J. Geophys. Res., 109(F1), F01012 (doi: 10.1029/2003JF000065)
Hindmarsh, RCA and Le Meur, E (2001) Dynamical processes involved in the retreat of marine ice sheets. J. Glaciol., 47(157), 271-282 (doi: 10.3189/172756501781832269)
Howat, IM, Joughin, IR and Scambos, TA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 1559-1561
Hutter, K (1983) Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. D Reidel, Dordrecht/Terra Scientific, Tokyo
Huybrechts, P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn., 5(2), 79-92
Huybrechts, P and de Wolde, J (1999) The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12(8), 2169-2188
Huybrechts, P, Payne, T and the EISMINT Intercomparison Group (1996) The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, 1-12
Johnsen, SJ and 14 others (1997) The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res., 102(C12), 26 397-26 410
Joughin, I and 8 others (2008) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res., 113(F1), F01004 (doi: 10.1029/2007JF000837)
Joughin, I, Smith, BE, Howat, IM, Scambos, T and Moon, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415-430 (doi: 10.3189/ 002214310792447734)
Jouvet, G, Huss, M, Blatter, H, Picasso, M and Rappaz, J (2009) Numerical simulation of Rhonegletscher from 1874 to 2100. J. Comput. Phys., 228(17), 6426-6439 (doi: 10.1016/j.jcp.2009.05.033)
Lemke, P and 10 others (2007) Observations: changes in snow, ice and frozen ground. In Solomon, S and 7 others eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 339-383
MacAyeal, DR (1989) Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B, Antarctica. J. Geophys. Res., 94(B4), 4071-4087 (doi: 10.1029/88JB03848)
Marsiat, I (1994) Simulation of the Northern Hemisphere continental ice sheets over the last glacial-interglacial cycle: experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model. Palaeoclimates, 1(1), 59-98
Martín, C, Navarro, FJ, Otero, J, Cuadrado, ML and Corcuera, MI (2004) Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica. Ann. Glaciol., 39, 1-8 (doi: 10.3189/172756404781814537)
Morland, LW (1984) Thermomechanical balances of ice sheet flows. Geophys. Astrophys. Fluid Dyn., 29(1-4), 237-266 (doi: 10.1080/03091928408248191)
Morland, LW (1987) Unconfined ice-shelf flow. In Van der Veen, CJ and Oerlemans, J eds. Dynamics of the West Antarctic ice sheet. D Reidel, Dordrecht, 99-116
Morlighem, M, Rignot, E, Seroussi, H, Larour, E, Ben Dhia, H and Aubry, D (2010) Spatial patterns of basal drag inferred using control methods from a full-Stokes and simpler models for Pine Island Glacier, West Antarctica. Geophys. Res. Lett., 37(14), L14502 (doi: 10.1029/2010GL043853)
North Greenland Ice Core Project (NorthGRIP) members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005), 111-228 (doi: 10.1038/nature02805)
Pattyn, F (1996) Numerical modelling of a fast-flowing outlet glacier: experiments with different basal conditions. Ann. Glaciol., 23, 237-246
Pattyn, F (2000) Ice-sheet modelling at different spatial resolutions: focus on the grounding zone. Ann. Glaciol., 31, 211-216 (doi: 10.3189/172756400781820435)
Pattyn, F (2003) A new three-dimensional higher-order thermomechanical ice-sheet model: basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 108(B8), 2382 (doi: 10.1029/2002JB002329)
Pattyn, F and Decleir, H (1998) The Shirase flow-line model: an additional tool for interpreting the Dome-Fuji signal. Polar Meteorol. Glaciol., 12, 104-111
Pattyn, F and 20 others (2008) Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere, 2(2), 95-108 (doi: 10.5194/tc-2-95-2008)
Payne, AJ and 10 others (2000) Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 46(153), 227-238 (doi: 10.3189/172756500781832891)
Pollard, D and DeConto, RM (2007) A coupled ice-sheet/ice- shelf/sediment model applied to a marine margin flowline: forced and unforced variations. In Hambrey, MJ, Christoffersen, P, Glasser, NF and Hubbard, B eds. Glacial sedimentary processes and products. Blackwell, Malden, MA, 37-52
Pollard, D and DeConto, RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236), 329-332 (doi: 10.1038/nature07809)
Price, SF, Waddington, ED and Conway, H (2007) A full- stress, thermomechanical flow band model using the finite volume method. J. Geophys. Res., 112(F3), F03020 (doi: 10.1029/2006JF000724)
Price, SF, Payne, AJ, Howat, IM and Smith, BE (2011) Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA (PNAS), 108(22), 8978-8983 (doi: 10.1073/pnas.1017313108)
Reeh, N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113-128
Ren, D and Leslie, LM (2011) Three positive feedback mechanisms for ice-sheet melting in a warming climate. J. Glaciol., 57(206), 1057-1066
Ren, D, Fu, R, Leslie, LM, Chen, J, Wilson, C and Karoly, DJ (2011a) The Greenland ice sheet response to transient climate change. J. Climate, 24, 3469-3483
Ren, D, Fu, R, Leslie, LM, Karoly, DJ, Chen, J and Wilson, C (2011b) A multirheology ice model: formulation and application to the Greenland ice sheet. J. Geophys. Res., 116(D5), D05112 (doi: 10.1029/2010JD014855)
Rignot, E and Kanagaratnam, P (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rignot, E, Velicogna, I, Van den Broeke, MR, Monaghan, A and Lenaerts, J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503 (doi: 10.1029/2011GL046583)
Ritz, C, Rommelaere, V and Dumas, C (2001) Modeling the evolution of Antarctic ice sheet over the last 42 0 000 years: implications for altitude changes in the Vostok region. J. Geophys. Res., 106(D23), 31 943-31 964
Rogozhina, I, Martinec, Z, Hagedoorn, JM, Thomas, M and Fleming, K (2011) On the long-term memory of the Greenland Ice Sheet. J. Geophys. Res., 116(F1), F01011 (doi: 10.1029/2010JF001787)
Rutt, IC, Hagdorn, M, Hulton, NRJ and Payne, AJ (2009) The Glimmer community ice sheet model. J. Geophys. Res., 114(F2), F02004 (doi: 10.1029/2008JF001015)
Saito, F and Abe-Ouchi, A (2004) Thermal structure of Dome Fuji and east Dronning Maud Land, Antarctica, simulated by a threedimensional ice-sheet model. Ann. Glaciol., 39, 433-438 (doi: 10.3189/172756404781814258)
Saito, F, Abe-Ouchi, A and Blatter, H (2003) Effects of first-order stress gradients in an ice sheet evaluated by a three-dimensional thermomechanical coupled model. Ann. Glaciol., 37, 166-172 (doi: 10.3189/172756403781815645)
Seddik, H, Greve, R, Zwinger, T and Placidi, L (2011) A full Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution. Cryosphere, 5(2), 495-508 (doi: 10.5194/tc-5-495-2011)
Shapiro, NM and Ritzwoller, MH (2004) Inferring surface heat flux distribution guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 233(1-2), 213-224
Solomon, S and 7 others eds. (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Sugiyama, S, Gudmundsson, GH and Helbing, J (2003) Numerical investigation of the effects of temporal variations in basal lubrication on englacial strain-rate distribution. Ann. Glaciol., 37, 49-54 (doi: 10.3189/172756403781815618)
Zwally, HJ, Abdalati, W, Herring, T, Larson, K, Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland ice- sheet flow. Science, 297(5579), 218-222 (doi: 10.1126/sci- ence.1072708)
Zwinger, T and Moore, JC (2009) Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lov^nbreen, Svalbard. Cryosphere, 3(2), 217-229
Zwinger, T, Greve, R, Gagliardini, O, Shiraiwa, T and Lyly, M (2007) A full Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov crater glacier, Kamchatka. Ann. Glaciol., 45, 29-37 (doi: 10.3189/172756407782282543)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed