Skip to main content Accessibility help
×
Home

The sliding velocity over a sinusoidal bed at high water pressure

  • Martin Truffer (a1) and Almut Iken (a2)

Abstract

Under idealized conditions, when pressurized water has access to all low-pressure areas at the glacier bed, a sliding instability exists at a critical pressure, pc, well below the overburden pressure, p0. The critical pressure is given by , where l is the wave length and a is the amplitude of a sinusoidal bedrock, and T is the basal shear stress. When the subglacial water pressure, pw, approaches this critical value, the area of ice-bed contact, △l, becomes very small and the pressure on the contact area becomes very large. This pressure is calculated from a force balance and the corresponding rate of compression is obtained using Glen’s flow law for ice. On the assumption that compression in the vicinity of the contact area occurs over a distance of the order of the size of this area, Δl, a deformational velocity is estimated. The resultant sliding velocity shows the expected instability at the critical water pressure. The dependency on other parameters, such as wavelength l and roughness a/l, was found to be the same as for sliding without bed separation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The sliding velocity over a sinusoidal bed at high water pressure
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The sliding velocity over a sinusoidal bed at high water pressure
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The sliding velocity over a sinusoidal bed at high water pressure
      Available formats
      ×

Copyright

References

Hide All
Bindschadler, R. 1983.The importance of pressurized subglacial water in separation and sliding at the glacier bed.J. Glaciol., 29(101), 319.
Budd, W.F., Keage, P. L. and Blundy, N. A.. 1979. Empirical studies of ice sliding. J.Glaciol, 23(89), 157170.
Fowler, A. C. 1979. A mathematical approach to the theory of glacier sliding. J.Glaciol., 23(89), 131141.
Fowler, A. C. 1986. A sliding law for glaciers of constant viscosity in the presence of subglacial cavitation. Proc. R. Soc. London,Ser. A, 407 (1832), 147-170.
Fowler, A. C. 1987. Sliding with cavity formation. J.Glaciol., 33(115), 255267.
Gudmundsson, G. H. 1994. Glacier sliding over sinusoidal bed and the characteristics of creeping flow over bedrock undulations. Eidg. Tech. Hochschule, Zfrich. Versuchsanst. Wasserbau,Hydrol.Glaziol.Mitt. 130.
Iken, A. 1981. The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol., 27(97), 407421.
Iken, A. and Bindschadler, R. A.. 1986. Combined measurements of subglacial water pressure and surface velocity of Findelengletschcr, Switzerland: conclusions about drainage system and sliding mechanism. J.Glaciol., 32(110), 101119.
Iken, A. and M. Truffer. 1997. The relationship between subglacial water pressure and velocity of Findelengletscher, Switzerland, during its advance and retreat. J. Glaciol., 43(144), 328338.
Jaeger, J. C. 1971. Elasticity, fracture and flow: with engineering and geological applications. Third edition. London, Methuen … Co. Ltd. and Science Paperbacks.
Kamb, B. 1970. Sliding motion of glaciers: theory and observation. Rev Geophys. Space Phys., 8(4), 673728.
Kamb, B. 1987. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9),9083-9100.
Lliboutry, L. 1968. General theory of subglacial cavitation and sliding of temperate glaciers. J. Glaciol., 7(49), 2158.
Lliboutry, L. 1979. Local friction laws for glaciers: a critical review and new openings. J. Glaciol., 23(89), 6795.
Lliboutry, L.A. 1987. Very slow flows of solids: basics of modeling in geodynamics and glaciology. Dordrecht, etc., Martinus Nijhoff Publishers,
Schweizer, J. and A. Iken. 1992. The role of bed separation and friction in sliding over an undeformable bed. J.Glaciol., 38(l28), 7792.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed