Skip to main content Accessibility help
×
Home

Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08

  • Shin Sugiyama (a1), Hiroyuki Enomoto (a2), Shuji Fujita (a2), Kotaro Fukui (a3), Fumio Nakazawa (a2), Per Holmlund (a4) and Sylviane Surdyk (a2)...

Abstract

During the Japanese-Swedish Antarctic traverse expedition of 2007/08, we measured the surface snow density at 46 locations along the 2800 km long route from Syowa station to Wasa station in East Antarctica. The mean snow density for the upper 1 (or 0.5) m layer varied from 333 to 439 kg m-3 over a region spanning an elevation range of 365-3800 ma.s.l. The density variations were associated with the elevation of the sampling sites; the density decreased as the elevation increased, moving from the coastal region inland. However, the density was relatively insensitive to the change in elevation along the ridge on the Antarctic plateau between Dome F and Kohnen stations. Because surface wind is weak in this region, irrespective of elevation, the wind speed was suggested to play a key role in the near-surface densification. The results of multiple regression performed on the density using meteorological variables were significantly improved by the inclusion of wind speed as a predictor. The regression analysis yielded a linear dependence between the density and the wind speed, with a coefficient of 13.5 kg m-3 (m s-1)-1. This relationship is nearly three times stronger than a value previously computed from a dataset available in Antarctica. Our data indicate that the wind speed is more important to estimates of the surface snow density in Antarctica than has been previously assumed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Snow density along the route traversed by the Japanese-Swedish Antarctic Expedition 2007/08
      Available formats
      ×

Copyright

References

Hide All
Alley, RB (1988) Concerning the deposition and diagenesis of strata in polar firn. J. Glaciol., 34(118), 283-290
Anderson, DL and Benson, CS (1963) The densification and diagenesis of snow. In Kingery, WD ed. Ice and snow: properties, processes, and applications. MIT Press, Cambridge, MA, 391-411
Arthern, RJ and Wingham, DJ (1998) The natural fluctuations of firn densification and their effect on the geodetic determination of ice sheet mass balance. Climatic Change, 40(4), 605-624
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009) Antarctic 1 km Digital Elevation Model (DEM) from combined ERS-1 radar and ICESat laser satellite altimetry. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/docs/daac/nsidc0422_antarctic_1km_dem/index.html
Bender, M and 6 others (1994) Climatic correlations between Greenland and Antarctica during the past 100,000 years. Nature, 373(6513), 393-394.
Benson, CS (1967) Polar regions snow cover. In Oura, H ed. Physics of snow and ice. Institute of Low Temperature Science, Hokkaido University, Sapporo, 1039-1063
Bilello, MA (1967) Relationships between climate and regional variations in snow-cover density in North America. In Oura, H ed. Physics of snow and ice. Institute of Low Temperature Science, Hokkaido University, Sapporo, 1015-1028
Birnbaum, G and 14 others (2010) Strong-wind events and their influence on the formation of snow dunes: observations from Kohnen station, Dronning Maud Land, Antarctica. J. Glaciol., 56(199), 891-902 (doi: 10.3189/002214310794457272)
Braaten, DA (1997) Detailed assessment of snow accumulation in katabatic wind areas of the Ross Ice Shelf, Antarctica. J. Geophys. Res., 102(D25), 30 047-30 058
Butler, JH and 8 others (1999) A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature, 399(6738), 749-755
Cameron, RL, Picciotto, E, Kane, HS and Gliozzi, J (1968) Glaciology of the Queen Maud Land traverse, 1964-1965 South Pole - pole of relative inaccessibility. Inst. Polar Stud. Rep. 23
Colbeck, SC and 7 others (1990) The international classification for seasonal snow on the ground. International Commission on Snow and Ice, International Association of Scientific Hydrology, Wallingford, Oxon
Conger, SM and McClung, DM (2009) Comparison of density cutters for snow profile observations. J. Glaciol., 55(189), 163-169 (doi: 10.3189/002214309788609038)
Craven, M and Allison, I (1998) Firnification and the effects of wind-packing on Antarctic snow. Ann. Glaciol., 27, 239-245
Eisen, O and 15 others (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev. Geophys., 46(RG2), RG2001 (doi: 10.1029/ 2006RG000218)
Endo, Y and Fujiwara, K (1973) Characteristics of the snow cover in East Antarctica along the route of the JARE South Pole traverse and factors controlling such characteristics. JARE Sci. Rep. 7, 1-27
Frezzotti, M and 13 others (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J. Glaciol., 51(172), 113-124 (doi: 10.3189/ 172756505781829502)
Frezzotti, M, Urbini, S, Proposito, M, Scarchilli, C and Gandolfi, S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antarctica. J. Geophys. Res., 112(F2), F02032 (doi: 10.1029/2006JF000638)
Fujita, S, Okuyama, J, Hori, A and Hondoh, T (2009) Metamorphism of stratified firn at Dome Fuji, Antarctica: a mechanism for local insolation modulation of gas transport conditions during bubble close off. J. Geophys. Res., 114(F3), F03023 (doi: 10.1029/ 2008JF001143)
Fujita, S and 25 others (2011) Spatial and temporal variability of snow accumulation rate on East Antarctic divide between ice Dome Fuji and EPICA DML. Cryosphere, 5(4), 1057-1081 (doi: 10.5194/tc-5-1057-2011)
Furukawa, T, Kamiyama, K and Maeno, H (1996) Snow surface features along the traverse route from the coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol., 10, 13-24
Gow, AJ (1968) Deep core studies of the accumulation and densification of snow at Byrd Station and Little America V. CRREL Res. Rep. 197
Grody, N (2008) Relationship between snow parameters and microwave satellite measurements: theory compared with Advanced Microwave Sounding Unit observations from 23 to 150 GHz. J. Geophys. Res., 113(D22), D22108 (doi: 10.1029/ 2007JD009685)
Helsen, MM and 7 others (2008) Elevation changes in Antarctica mainly determined by accumulation variability. Science, 320(5883), 1626-1629 (doi: 10.1126/science.1153894)
Herron, MM and Langway, CC Jr (1980) Firn densification: an empirical model. J. Glaciol., 25(93), 373-385
Holmlund, P and Fujita, S (2009) Japanese-Swedish Antarctic Expedition, JASE. In Thoren, A ed. Swedish Polar Secretariat Year Book 2008. Swedish Polar Research Secretariat, Stockholm, 18-21
Hubbard, B and Glasser, N (2005) Field techniques in glaciology and glacial geomorphology. Wiley, New York
Kameda, T, Shoji, H, Kawada, K, Watanabe, O and Clausen, HB (1994) An empirical relation between overburden pressure and firn density. Ann. Glaciol., 20, 87-94
Kameda, T, Motoyama, H, Fujita, S and Takahashi, S (2008) Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J. Glaciol., 54(184), 107-116 (doi: 10.3189/002214308784409062)
Karkas, E, Martma, T and Sonninen, E (2005) Physical properties and stratigraphy of surface snow in western Dronning Maud Land, Antarctica. Polar Res., 24(1-2), 55-67 (doi: 10.1111/j.1751- 8369.2005.tb00140.x)
Kaspers, KA, Van de Wal, RSW, Van den Broeke, MR, Schwander, J, Van Lipzig, NPM and Brenninkmeijer, CAM (2004) Model calculations of the age of firn air across the Antarctic continent. Atmos. Chem. Phys., 4(5), 1365-1380 (doi: 10.5194/acp-4- 1365-2004)
Lacroix, P, Legresy, B, Remy, F, Blarel, F, Picard, G and Brucker, L (2009) Rapid change of snow surface properties at Vostok, East Antarctica, revealed by altimetry and radiometry. Remote Sens. Environ., 113(12), 2633-2641 (doi: 10.1016/j.rse.2009.07.019)
Lenaerts, JTM and Van den Broeke, MR (2012) Modeliing drift snow in Antarctica with a regional climate model. 2. Results. J. Geophys. Res., 117(D5), D05109 (doi: 10.1029/2010 JD015419)
Li, J and Zwally, HJ (2002) Modeled seasonal variations of firn density induced by steady-state surface air-temperature cycle. Ann. Glaciol., 34, 299-302 (doi: 10.3189/ 172756402781817707)
Motoyama, H, Furukawa, T and Nishio, F (2008) Study of ice flow observations in Shirase drainage basin and around Dome Fuji area, East Antarctica, by differential GPS method. Antarct. Rec., 52, 216-231 [In Japanese with English summary]
Oerter, H, Graf, W, Wilhelms, F, Minikin, A and Miller, H (1999) Accumulation studies on Amundsenisen, Dronning Maud Land, by means of tritium, dielectric profiling and stable-isotope measurements: first results from the 1995-96 and 1996-97 field seasons. Ann. Glaciol., 29, 1-9 (doi: 10.3189/ 172756499781820914)
Parish, TR and Bromwich, DH (1987) The surface windfield over the Antarctic ice sheets. Nature, 328(6125), 51-54
Rotschky, G and 6 others (2007) A new surface accumulation map for western Dronning Maud Land, Antarctica, from interpolation of point measurements. J. Glaciol., 53(182), 385-398 (doi: 10.3189/002214307783258459)
Shiraiwa, T, Shoji, H, Saito, T, Yokoyama, K and Watanabe, O (1996) Structure and dielectric properties of surface snow along the traverse route from coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol., 10, 1-12
Spencer, MK, Alley, RB and Creyts, TT (2001) Preliminary firn- densification model with 38-site dataset. J. Glaciol., 47(159), 671-676 (doi: 10.3189/172756501781831765)
Sturges, WT and 7 others (2001) Methyl bromide, other brominated methanes, and methyl iodide in polar firn air. J. Geophys. Res., 106(D2), 1595-1606
Sturm, M and Benson, C (2004) Scales of spatial heterogeneity for perennial and seasonal snow layers. Ann. Glaciol., 38, 253-260 (doi: 10.3189/172756404781815112)
Sugiyama, S, Enomoto, H, Fujita, S, Fukui, K, Nakazawa, F and Holmlund, P (2010) Dielectric permittivity of snow measured along the route traversed in the Japanese-Swedish Antarctic Expedition 2007/08. Ann. Glaciol., 51(55), 9-15 (doi: 10.3189/ 172756410791392745)
Takahashi, S and Kameda, T (2007) Snow density for measuring surface mass balance using the stake method. J. Glaciol., 53(183), 677-680
Takahashi, S, Kameda, T, Enomoto, H, Motoyama, H and Watanabe, O (2004) Automatic weather station (AWS) data collected by the 33rd to 42nd Japanese Antarctic Research Expeditions during 1993-2001. JARE Data Rep. 276.
Tiuri, MT, Sihvola, AH, Nyfors, EG and Hallikainen, MT (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J. Ocean. Eng., 9(5), 377-382
Trudinger, C, Enting, IG, Etheridge, DM, Francey, RJ, Levchenko, VA and Steele, LP (1997) Modeling air movement and bubble trapping in firn. J. Geophys. Res., 102(D6), 6747-6763
Van den Broeke, M (2008) Depth and density of the Antarctic firn layer. Arct. Antarct. Alp. Res., 40(2), 432-438
Van den Broeke, MR and 6 others (1999) Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J. Glaciol., 45(150), 295-302
Van den Broeke, MR, Van As, D, Reijmer, CH and Van de Wal, RSW (2004) The surface radiation balance in Antarctica as measured with automatic weather stations. J. Geophys. Res., 109(D9), D09103 (doi: 10.1029/2003JD004394)
Vihma, T, Mattila, O-P, Pirazzini, R and Johansson, MM (2011) Spatial and temporal variability in summer snow pack in Dronning Maud Land, Antarctica. Cryosphere, 5(1), 187-201 (doi: 10.5194/tc-5-187-2011)
Watanabe, O (1978) Distribution of surface features of snow cover in Mizuho Plateau. Mem. Natl Inst. Polar Res., Special Issue 7, 154-181
Yamada, T and Watanabe, O (1978) Estimation of mass input in the Shirase and the Soya drainage basins in Mizuho Plateau. Mem. Natl Inst. Polar Res., Special Issue 7, 182-197
Zwally, HJ and Li, J (2002) Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. J. Glaciol., 48(161), 199-207 (doi: 10.3189/ 172756502781831403)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed