Skip to main content Accessibility help
×
×
Home

Snowbreeder 5: a Micro-CT device for measuring the snow-microstructure evolution under the simultaneous influence of a temperature gradient and compaction

  • MAREIKE WIESE (a1) and MARTIN SCHNEEBELI (a1)

Abstract

The instrumented sample holder Snowbreeder 5 is used to investigate the simultaneous influence of settlement on temperature-gradient snow metamorphism in time-lapse micro-computed tomography experiments. So far, experiments have only been done on temperature-gradient snow metamorphism without settlement or settlement under isothermal conditions. With the new device we can impose a constant temperature gradient on a snow sample and induce settlement by placing a passive load on top of the snow sample. The weight of the load can be varied, simulating various snow heights on top of the snow sample. Snow-temperature measurements on the passive load are possible due to wireless data transfer via Bluetooth. The temperature gradient is set by controlling the air temperature inside the computer tomograph and by a Peltier element at the bottom of the snow sample. First experiments under isothermal conditions and a constant temperature gradient of 43 K m−1 showed that the settlement was reduced to almost half as soon as a temperature gradient was applied under otherwise almost equal snow conditions. The compactive viscosity in the isothermal experiment was in the range of literature values.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Snowbreeder 5: a Micro-CT device for measuring the snow-microstructure evolution under the simultaneous influence of a temperature gradient and compaction
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Snowbreeder 5: a Micro-CT device for measuring the snow-microstructure evolution under the simultaneous influence of a temperature gradient and compaction
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Snowbreeder 5: a Micro-CT device for measuring the snow-microstructure evolution under the simultaneous influence of a temperature gradient and compaction
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Mareike Wiese <mareike.wiese@slf.ch>

References

Hide All
ASTM (2011) D2435/D2435M-11 standard test methods for one-dimensional consolidation properties of soils using incremental loading . ASTM International, West Conshohocken, PA (doi: 10.1520/D2435_D2435M-11)
Calonne, N, Flin, F, Geindreau, C, Lesaffre, B and Rolland du Roscoat, S (2014) Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy. Cryosphere, 8(6), 22552274 (doi: 10.5194/tc-8-2255-2014)
De Quervain, MR (1958) On metamorphism and hardening of snow under constant pressure and temperature gradient. Int. Assoc. Sci. Hydrol. Publ., 46, 225239
Ebner, PP, Grimm, SA, Schneebeli, M and Steinfeld, A (2014) An instrumented sample holder for time-lapse microtomography measurements of snow under advective airflow. Geosci. Instrum. Methods Data Sys., 3(2), 179185 (doi: 10.5194/gi-3-179-2014)
Kaempfer, TU and Schneebeli, M (2007) Observation of isothermal metamorphism of new snow and interpretation as a sintering process. J. Geophys. Res., 112 (doi: 10.1029/2007JD009047)
Pinzer, B and Schneebeli, M (2009a) Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies. Meas. Sci. Technol., 20(9) (doi: 10.1088/0957-0233/20/9/095705)
Pinzer, B and Schneebeli, M (2009b) Snow metamorphism under alternating temperature gradients: morphology and recrystallization in surface snow. Geophys. Res. Lett., 36(23) (doi: 10.1029/2009GL039618)
Pinzer, BR, Schneebeli, M and Kaempfer, TU (2012) Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by timelapse micro-tomography. Cryosphere, 6(5), 11411155 (doi: 10.5194/tc-6-1141-2012)
Schleef, S and Löwe, H (2013) X-ray microtomography analysis of isothermal densification of new snow under external mechanical stress. J. Glaciol., 59(214), 233–143 (doi: 10.3189/2013JoG12J076)
Schleef, S, Löwe, H and Schneebeli, M (2014) Hot-pressure sintering of low-density snow analyzed by X-ray microtomography and in situ microcompression. Acta Mater., 71, 185194 (doi: 10.1016/j.actamat.2014.03.004)
Schneebeli, M and Sokratov, SA (2004) Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process., 18(18), 36553665 (doi: 10.1002/hyp.5800)
Shapiro, LH, Johnson, JB, Sturm, M and Blaisdell, GL (1997) Snow mechanics: review of the state of knowledge and applications. CRREL Report 97-3
Theile, T, Löwe, H, Theile, TC and Schneebeli, M (2011) Simulating creep of snow based on microstructure and the anisotropic deformation of ice. Acta Mater., 59(18), 71047113 (doi: 10.1016/j.actamat.2011.07.065)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed