Skip to main content

South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy


The IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore >100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use manual and algorithmic matching to synthesize our South Pole measurements with ice-core and logging data from Dome C, East Antarctica. We derive impurity concentration, precision chronology, annual-layer thickness, local spatial variability, and identify several widespread volcanic ash depositions useful for dating. We also examine the interval around ∼74 ka recently isolated with radiometric dating to bracket the Toba (Sumatra) supereruption.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy
      Available formats
Hide All
Ackermann M and 116 others (2006) Optical properties of deep glacial ice at the South Pole. J. Geophys. Res., 111(D13), D13203 (doi: 10.1029/2005JD006687)
AMANDA Collaboration (1995) On the age vs depth and optical clarity of deep ice at the South Pole. J. Glaciol., 41(139), 445454
AMANDA Collaboration (2001) Observation of high-energy neutrinos using Cerenkov detectors embedded deep in Antarctic ice. Nature, 410(6827), 441443 (doi: 10.1038/35068509)
Ambrose SH (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J. Human Evol., 34(6), 623651 (doi: 10.1006/jhev.1998.0219)
Askebjer P and 29 others (1995) Optical properties of the South Pole ice at depths between 0.8 and 1 kilometer. Science, 267(5201), 11471150 (doi: 10.1126/science.267.5201.1147)
Askebjer P and 35 others (1997a) Optical properties of deep ice at the South Pole: absorption. Appl. Opt., 36(18), 41684180 (doi: 10.1364/AO.36.004168)
Askebjer P and 34 others (1997b) UV and optical light transmission properties in deep ice at the South Pole. Geophys. Res. Lett., 24(11), 13551358 (doi: 10.1029/97GL01246)
Barkov NI and VYa Lipenkov (1985) Kolichestvennaya harakteristika struktury l’da do glubiny 1400m v rajone stantsii Vostok v Antarktide [Numerical characteristics of ice structure down to a depth of 1,400 m in the region of Vostok Station, Antarctica]. Mater. Glyatsiol. Issled. 51, 178
Bay RC, Price PB, Clow GD and Gow AJ (2001) Climate logging with a new rapid optical technique at Siple Dome. Geophys. Res. Lett., 28(24), 46354638 (doi: 10.1029/2001GL013763)
Bay RC and 6 others (2006) Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period. J. Geophys. Res., 111(D11), D11108 (doi: 10.1029/2005JD006306)
Bay RC, Rohde RA, Price PB and Bramall NE (2010) South Pole paleowind from automated synthesis of ice core records. J. Geophys. Res., 115(D14), D14126 (doi: 10.1029/2009JD013741)
Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35(12), 23622367 (doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2)
Bigler M, Röthlisberger R, Lambert F, Stocker TF and Wagenbach D (2006) Aerosol deposited in East Antarctica over the last glacial cycle: detailed apportionment of continental and sea-salt contributions. J. Geophys. Res., 111(D8), D08205 (doi: 10.1029/2005JD006469)
Bingham RG, Siegert MJ, Young DA and Blankenship DD (2007) Organized flow from the South Pole to the Filchner–Ronne ice shelf: an assessment of balance velocities in interior East Antarctica using radio echo sounding data. J. Geophys. Res., 112(F3), F03S26 (doi: 10.1029/2006JF000556)
Bramall NE, Bay RC, Woschnagg K, Rohde RA and Price PB (2005) A deep high-resolution optical log of dust, ash, and stratigraphy in South Pole glacial ice. Geophys. Res. Lett., 32(21), L21815 (doi: 10.1029/2005GL024236)
Coulter SE and 8 others (2012) Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. J. Geophys. Res., 117(D21), D21303 (doi: 10.1029/2012JD017698)
D’Errico J (2005) Surface fitting using gridfit. MATLAB Central File Exchange
Delmonte B and 6 others (2008) Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): provenance during glacial ages over the last 800 kyr. Geophys. Res. Lett., 35(7), L07703 (doi: 10.1029/2008GL033382)
Drews R and 7 others (2009) Layer disturbances and the radio-echo free zone in ice sheets. Cryosphere, 3(2), 195203 (doi: 10.5194/tcd-3-307-2009)
Fischer H and 28 others (2007) Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett., 260(1–2), 340354 (doi: 10.1016/j.epsl.2007.06.014)
Fudge TJ and Smith BE (2010) Light propagation in firn: application to borehole video. J. Glaciol., 56(198), 614624 (doi: 10.3189/002214310793146205)
Gabrielli P and 11 others (2010) A major glacial–interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quat. Sci. Rev., 29(1–2), 265273 (doi: 10.1016/j.quascirev.2009.09.002)
Gray DE ed. (1972) American Institute of Physics handbook, 3rd edn. McGraw-Hill, New York
Hamilton GS (2004) Topographic control of regional accumulation rate variability at South Pole and implications for ice-core interpretation. Ann. Glaciol., 39, 214218 (doi: 10.3189/172756404781814050)
Hays JD, Imbrie J and Shackleton N (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science, 194(4270), 11211132
He YD and Price PB (1998) Remote sensing of dust in deep ice at the South Pole. J. Geophys. Res., 103(D14), 17 04117 056 (doi: 10.1029/98JD01643)
Huybers P and Wunsch C (2005) Obliquity pacing of the late Pleistocene glacial terminations. Nature, 434(7032), 491494 (doi: 10.1038/nature03401)
IceCube Collaboration (2006) First year performance of the IceCube neutrino telescope. Astropart. Phys., 26(3), 155173 (doi: 10.1016/j.astropartphys.2006.06.007)
IceCube Collaboration (2009) The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Meth. Phys. Res. A, 601(3), 294316 (doi: 10.1016/j.nima.2009.01.001)
IceCube Collaboration (2010) Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy. Astropart. Phys., 33(5–6), 277286 (doi: 10.1016/j.astropartphys.2010.01.012)
IceCube Collaboration (2011) Measurement of acoustic attenuation in South Pole ice. Astropart. Phys., 34(6), 382393 (doi: 10.1016/j.astropartphys.2010.10.003)
IceCube Collaboration (2013) Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Meth. Phys. Res. A, 711, 7389 (doi: 10.1016/j.nima.2013.01.054)
Jones N (2007) Polar research: buried treasure. Nature, 446(7132), 126128 (doi: 10.1038/446126a)
Jouzel J and 31 others (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793796 (doi: 10.1126/science.1141038)
Kravchenko I, Besson D, Ramos A and Remmers J (2011) Radio frequency birefringence in south polar ice and implications for neutrino reconstruction. Astropart. Phys., 34(10), 755768 (doi: 10.1016/j.astropartphys.2011.01.008)
Kurbatov AV and 6 others (2006) A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. J. Geophys. Res., 111(D12), D12307 (doi: 10.1029/2005JD006072)
Lambert F, Bigler M, Steffensen JP, Hutterli M and Fischer H (2011) The calcium–dust relationship in high-resolution data from Dome C, Antarctica. Climate Past Discuss., 7(2), 11131137 (doi: 10.5194/cpd-7-1113-2011)
Lambert F, Bigler M, Steffensen JP, Hutterli M and Fischer H (2012) Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate Past, 8(2), 609623 (doi: 10.5194/cp-8-609-2012)
Legrand M and Mayewski P (1997) Glaciochemistry of polar ice cores: a review. Rev. Geophys., 35(3), 219243 (doi: 10.1029/96RG03527)
Li F, Ginoux P and Ramaswamy V (2008) Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: contribution of major sources. J. Geophys. Res., 113(D10), D10207 (doi: 10.1029/2007JD009190)
Li F, Ramaswamy V, Ginoux P, Broccoli AJ, Delworth T and Zeng F (2010) Toward understanding the dust deposition in Antarctica during the Last Glacial Maximum: sensitivity studies on plausible causes. J. Geophys. Res., 115(D24), D24120 (doi: 10.1029/2010JD014791)
Lipenkov VYa, Barkov NI, Duval P and Pimienta P (1989) Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35(121), 392398
Markov MA and Zheleznykh IM (1986) Large-scale Cherenkov detectors in ocean, atmosphere and ice. Nucl. Instrum. Meth. Phys. Res. A, 248(1), 242251
Muller RA and MacDonald GJ (1997) Glacial cycles and astronomical forcing. Science, 277(5323), 215218 (doi: 10.1126/science.277.5323.215)
Narcisi B, Petit JR, Delmonte B, Basile-Doelsch I and Maggi V (2005) Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): implications for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet. Sci. Lett., 239(3–4), 253265 (doi: 10.1016/j.epsl.2005.09.005)
Nielsen SHH, Hodell DA, Kamenov G, Guilderson T and Perfit MR (2007) Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst., 8(12), Q12005 (doi: 10.1029/2007GC001618)
Obbard R and Baker I (2007) The microstructure of meteoric ice from Vostok, Antarctica. J. Glaciol., 53(180), 4162 (doi: 10.3189/172756507781833901)
Palais JM, Mosley-Thompson E and Thomas E (1987) Correlation of a 3,200 year old tephra in ice cores from Vostok and South Pole stations, Antarctica. Geophys. Res. Lett., 14(8), 804807 (doi: 10.1029/GL014i008p00804)
Parrenin F and 26 others (2007a) The EDC3 chronology for the EPICA Dome C ice core. Climate Past, 3(3), 485497 (doi: 10.5194/cp-3-485-2007)
Parrenin F and 15 others (2007b) 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. Climate Past, 3(2), 243259 (doi: 10.5194/cp-3-243-2007)
Price PB and Woschnagg K (2001) Role of group and phase velocity in high-energy neutrino observatories. Astropart. Phys., 15(1), 97100 (doi: 10.1016/S0927-6505(00)00142-0)
Price PB, Woschnagg K and Chirkin D (2000) Age vs depth of glacial ice at South Pole. Geophys. Res. Lett., 27(14), 21292132 (doi: 10.1029/2000GL011351)
Price PB and 9 others (2002) Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. Proc. Natl Acad. Sci. USA (PNAS), 99(12), 78447847 (doi: 10.1073/pnas.082238999)
Rampino MR and Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 359(6390), 5052 (doi: 10.1038/359050a0)
Rasmussen SO (2006) Improvement, dating and analysis of Greenland ice core stratigraphies. (PhD thesis, University of Copenhagen)
Rose WI and Chesner CA (1990) Worldwide dispersal of ash and gases from earth’s largest known eruption: Toba, Sumatra, 75 ka. Global Planet. Change, 3(3), 269275 (doi: 10.1016/0921-8181(90)90023-6)
Siegert MJ and Hodgkins R (2000) A stratigraphic link across 1100 km of the Antarctic ice sheet between the Vostok ice-core site and Titan Dome (near South Pole). Geophys. Res. Lett., 27(14), 21332136 (doi: 10.1029/2000GL008479)
Sime LC, Wolff EW, Oliver KIC and Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature, 462(7271), 342345 (doi: 10.1038/nature08564)
Storey M, Roberts RG and Saidin M (2012) Astronomically calibrated 40Ar/39Ar age for the Toba supereruption and global synchronization of late Quaternary records. Proc. Natl Acad. Sci. USA (PNAS), 109(46), 1868418688 (doi: 10.1073/pnas.1208178109)
Svensson A and 25 others (2013) Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP). Climate Past, 9(2), 749766 (doi: 10.5194/cp-9-749-2013)
Toohey M, Kruger K and Timmreck C (2013) Volcanic sulfate deposition to Greenland and Antarctica: a modeling sensitivity study. J. Geophys. Res., 118(10), 47884800 (doi: 10.1002/jgrd.50428)
Uchida T, Shimada W, Hondoh T, Mae S and Barkov NI (1995) Refractive- index measurements of natural air-hydrate crystals in an Antarctic ice sheet. Appl. Opt., 34(25), 57465749 (doi: 10.1364/AO.34.005746)
Woschnagg K and Price PB (2001) Temperature dependence of absorption in ice at 532 nm. Appl. Opt., 40(15), 24962500 (doi: 10.1364/AO.40.002496)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 4
Total number of PDF views: 26 *
Loading metrics...

Abstract views

Total abstract views: 48 *
Loading metrics...

* Views captured on Cambridge Core between 10th July 2017 - 18th January 2018. This data will be updated every 24 hours.