Skip to main content Accessibility help
×
×
Home

Stress-Gradient Coupling in Glacier Flow: I. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope *

  • Barclay Kamb (a1) and Keith A. Echelmeyer (a1)
Abstract

For a glacier flowing over a bed of longitudinally varying slope, the influence of longitudinal stress gradients on the flow is analyzed by means of a longitudinal flow-coupling equation derived from the “vertically” (cross-sectionally) integrated longitudinal stress equilibrium equation, by an extension of an approach originally developed by Budd (1968). Linearization of the flow-coupling equation, by treating the flow velocity u (“vertically” averaged), ice thickness h, and surface slope α in terms of small deviations Δ u , Δh, and ∆α from overall average (datum) values u o, h 0, and α 0, results in a differential equation that can be solved by Green’s function methods, giving Δ u (x) as a function of ∆h(x) and ∆α(x), x being the longitudinal coordinate. The result has the form of a longitudinal averaging integral of the influence of local h(x) and α(x) on the flow u (x): where the integration is over the length L of the glacier. The ∆ operator specified deviations from the datum state, and the term on which it operates, which is a function of the integration variable x′, represents the influence of local h(x′), α(x′), and channel-shape factor f(x′), at longitudinal coordinate x′, on the flow u at coordinate x, the influence being weighted by the “influence transfer function” exp (−|x′ − x|/ℓ) in the integral.

The quantity that appears as the scale length in the exponential weighting function is called the longitudinal coupling length. It is determined by rheological parameters via the relationship , where n is the flow-law exponent, η the effective longitudinal viscosity, and η the effective shear viscosity of the ice profile, η is an average of the local effective viscosity η over the ice cross-section, and (η)–1 is an average of η−1 that gives strongly increased weight to values near the base. Theoretically, the coupling length is generally in the range one to three times the ice thickness for valley glaciers and four to ten times for ice sheets; for a glacier in surge, it is even longer, ℓ ~ 12h. It is distinctly longer for non-linear (n = 3) than for linear rheology, so that the flow-coupling effects of longitudinal stress gradients are markedly greater for non-linear flow.

The averaging integral indicates that the longitudinal variations in flow that occur under the influence of sinusoidal longitudinal variations in h or α, with wavelength λ, are attenuated by the factor 1/(1 + (2πℓ/λ)2) relative to what they would be without longitudinal coupling. The short, intermediate, and long scales of glacier motion (Raymond, 1980), over which the longitudinal flow variations are strongly, partially, and little attenuated, are for λ ≲ 2ℓ , 2ℓ ≲ λ ≲ 20ℓ, and λ ≳ 20ℓ.

For practical glacier-flow calculations, the exponential weighting function can be approximated by a symmetrical triangular averaging window of length 4, called the longitudinal averaging length. The traditional rectangular window is a poor approximation. Because of the exponential weighting, the local surface slope has an appreciable though muted effect on the local flow, which is clearly seen in field examples, contrary to what would result from a rectangular averaging window.

Tested with field data for Variegated Glacier, Alaska, and Blue Glacier, Washington, the longitudinal averaging theory is able to account semi-quantitatively for the observed longitudinal variations in flow of these glaciers and for the representation of flow in terms of “effective surface slope” values. Exceptions occur where the flow is augmented by large contributions from basal sliding in the ice fall and terminal zone of Blue Glacier and in the reach of surge initiation in Variegated Glacier. The averaging length 4l that gives the best agreement between calculated and observed flow pattern is 2.5 km for Variegated Glacier and 1.8 km for Blue Glacier, corresponding to /h ≈ 2 in both cases.

If varies with x, but not too rapidly, the exponential weighting function remains a fairly good approximation to the exact Green’s function of the differential equation for longitudinal flow coupling; in this approximation, in the averaging integral is (x) but is not a function of x′. Effects of longitudinal variation of J are probably important near the glacier terminus and head, and near ice falls.

The longitudinal averaging formulation can also be used to express the local basal shear stress in terms of longitudinal variations in the local “slope stress” with the mediation of longitudinal stress gradients.

Résumé

L’influence des gradients de contraintes longitudinaux sur l’écoulement d’un glacier, dont le lit présente une variation longitudinale de pente, est analysée au moyen d’une équation de couplage longitudinal de l’écoulement. Cette dernière est déduite de la forme intégrée “verticalement" (en fait dans la section transversale) de l’équation décrivant l’équilibre des contraintes dans le sens longitudinal, suivant une extension de l’approche originale de Budd (1968). L’équation de couplage longitudinal est linéarisée en écrivant la vitesse d’écoulement u (moyenne dans la section transversale), l’épaisseur de glace h, et la pente de la surface α, comme sommes de valeurs moyennes u o, h o, αo et de petites déviations Δ u , Δh, et Δα. On obtient alors une équation différentielle qui peut être résolue par la méthode des fonctions de Green, donnant Δ u (x) en fonction de ∆h(x) et ∆α(x), x étant la coordonnée dans le sens longitudinal. Le résultat est obtenu sous la forme d’une intégrale représentant la moyenne selon x de l’influence des valeurs locales h(x) et α(x) sur la vitesse u (x): (l’intégration est faite sur la longueur L du glacier). L’opérateur ∆ indique la déviation de l’état de référence, et le terme sur lequel il opère, fonction de la variable d’intégration x′, représente l’influence des épaisseurs et pentes locales h(x’), ∞(x’) et du facteur de forme de la section f(x′), à l’abcisse x′, sur la vitesse u au point x. Cette influence est pondérée par la fonction de “transfert d’influence" exp(−|x′ − x|/ℓ).

La quantité qui apparaît comme longueur caractéristique dans la fonction de pondération exponentielle est appelée “longueur de couplage longitudinal”. est déduite des paramètres rhéologiques selon: , où n est l’exposant de la loi de comportement, η est la viscosité longitudinale efficace, est la viscosité de cisaillement efficace du profil. η est une moyenne de la viscosité efficace prise sur la section transversale, est une moyenne de η-1 qui donne un poids fortement accru aux valeurs proches de la base du glacier. Théoriquement, la longueur de couplage est généralement 1 à 3 fois l’épaisseur pour les glaciers de vallée, 4 à 10 fois l’épaisseur pour les calottes; pour un glacier en surge ~ 12h. Ses valeurs sont nettement plus importantes dans le cas d’une puissance avec n = 3 que dans le cas d’une viscosité newtonienne, de sorte que les effets dus aux gradients de contrainte longitudinaux sur le couplage sont notablement plus marqués dans le premier cas.

L’intégrale précédente indique que les variations longitudinales de la vitesse dues à des variations sinusoidales de h ou α de longueur d’onde λ (dans le sens longitudinal) sont amorties d’un facteur 1/(1 + (2πℓ/λ)2) par rapport à ce qu’elles seraient en l’absence de couplage longitudinal. Les échelles courte, intermédiare, grande, relatives au mouvement du glacier (Raymond, 1980), auxquelles les variations longitudinales de l’écoulement sont fortement, partiellement et peu atténuées, sont λ ≲ 2ℓ, 2ℓ ≲ λ ≲ 20ℓ, et λ ≳ 20ℓ.

En pratique, l’exponentielle de pondération peut être approchée par une fonction fenêtre triangulaire symétrique de longueur 4, appelée longueur de pondération longitudinale. La fenêtre rectangulaire traditionnelle constitue une mauvaise approximation. A cause de la pondération exponentielle, la pente locale de la surface a un effet appréciable, bien qu’il soit masqué, sur l’écoulement local, clairement observé sur des exemples de terrain, contrairement à ce qui serait obtenu avec une fenêtre rectangulaire.

D’aprés la comparaison avec des mesures faites sur le Variegated Glacier, Alaska, et le Blue Glacier, Washington, la théorie du couplage longitudinal est capable de rendre compte, de façon semi quantitative, des variations de l’écoulement longitudinal de ces glaciers et de la représentation de l’écoulement en terme de valeurs de “pente de surface efficace”. Des exceptions apparaissent quand l’écoulement est accru, dû à une forte contribution du glissement basal dans la chute et dans la zone terminale du Blue Glacier, et à l’endroit où approche un début de surge pour le Variegated Glacier. La longueur de pondération 4 qui donne le meilleur ajustement entre les écoulements calculés et observés, est de 2,5 km pour le Variegated Glacier, et 1,8 km pour le Blue Glacier, correspondant à un /h ≃ dans les 2 cas.

Si varie avec x, mais pas trop vite, l’exponentielle de pondération demeure une très bonne approximation de la fonction de Green correspondant exactement à l’équation différentielle du couplage longitudinal; dans cette approximation, est à remplacer par (x) dans l’intégrale de moyenne, mais ce n’est pas une fonction de x′. Les effets d’une variation longitudinale de sont sans doute importants au voisinages des extrêmités du glacier et des chutes de séracs.

La formulation en moyenne longitudinale peut également être utilisée pour exprimer le frottement basal local en terme de variations longitudinales de la ‘‘contrainte de pente’’ locale par l’intermédiaire des gradients de contrainte longitudinaux.

Zusammenfassung

Für einen Gletscher, der über ein Bett mit wechselnder Längsneigung fliesst, wird der Einfluss der Spannungsgradienten in Längsrichtung auf das Fliessen mit Hilfe einer longitudinalen Fluss-Kopplungsgleichung, analysiert, die aus der ‘‘senkrecht” (d.h. querschnittsweise) integrierten Gleichung für das longitudinale Spannungsgleichgewicht durch eine Erweiterung eines ursprünglich von Budd (1968) entwickelten Ansatzes abgeleitet wird. Die Linearisierung der Fluss-Kopplungsgleichung – dadurch bewirkt, dass die Fliessgeschwindigkeit u (“senkrecht” gemittelt), die Eisdicke h und die Oberflächenneigung α in Form von kleinen Abweichungen Δ u , Δh und ∆α gegenüber Gesamtmittelwerten u o, h o und α 0 eingeführt werden – liefert eine Differentialgleichung, die durch Green’s Funktionsmethode gelöst werden kann; daraus ergibt sich Δ u (x) als Funktion von ∆h(x) und ∆∞(x), wobei x die Koordinate in Längsrichtung bedeutet. Das Ergebnis hat die Form eines in Längsrichtung mittelnden Integrals für den Einfluss der lokalen Werte von h(x) und ∞(x) auf den Fluss u (x): wobei sich die Integration über die Länge L des Gletschers erstreckt. Der ∆-Operator spezifiziert Abweichungen gegenüber dem Ausgangszustand; der Ausdruck, auf den er wirkt und der eine Funktion der Integrationsvariablen x’ ist, repräsentiert den Einfluss der lokalen Werte h(x′), α(x′) und des Kanalformfaktors f(x’) beim Längskoordinatenwert x′ auf den Fluss u bei x; dieser Einfluss wird durch die “Einfluss-Übertragungsfunktion” exp(−|x′ − x|/ℓ) im Integral gewichtet.

Die Grösse , die als Normierungslänge in der exponentiellen Gewichtsfunktion erscheint, wird die Longitudinale Kopplungslänge genannt; sie wird durch rheologische Parameter über die Beziehung bestimmt, worin n der Exponent des Fliessgesetzes, η die effektive Viskosität in Längsrichtung und die effektive Scherviskosität des Eisprofiles bedeuten. η ist ein Mittelwert für die lokale effektive Viskosität η über den Eisquerschnitt und ist ein Mittelwert für η −1, der Werten nahe am Untergrund ein stark erhöhtes Gewicht zuteilt. Theoretisch liegt die Kopplungslänge im allgemeinen im Bereich des Ein- bis Dreifachen der Eisdicke bei Talgletschern und des Vier- bis Zehnfachen für Eisdecken; für einen ausbrechenden Gletscher ist sie noch länger, nämlich ~ 12h. Sie ist deutlich länger für nicht-lineare (n = 3) als für lineare Rheologie, so dass Fluss-Kopplungseffekte von longitudalen Spannungsgradienten für nicht-linearen Fluss erheblich grösser sind.

Das mittelnde Integral zeigt, dass die longitudinalen Änderungen des Fliessens mit Wellenlängen λ, die unter dem Einfluss sinusförmiger longitudinaler Änderungen von h oder α auftreten, um den Faktor 1/(1 + 2πℓ/λ)2) I gegenüber ihrem Wert ohne longitudinale Kopplung abgeschwächt werden. Die kurzen, mittleren und langen Masstäbe für die Gletscherbewegung (Raymond, 1980), über die die longitudinalen Fliessschwankungen stark, teilweise und gering abgeschwächt werden, gelten für λ ≲ 2ℓ, 2ℓ ≲ λ ≲ 20ℓ, und λ ≳ 20ℓ.

Für praktische Berechnungen des Gletscherflusses kann die exponentielle Gewichtsfunktion durch ein dreieckssymmetrisches mittelndes Fenster der Länge 4, die sogenannte longitudinale mittelnde Länge, angenähert werden. Das übliche Rechtecksfenster ist eine schlechte Annäherung. Infolge der exponentiellen Gewichtung hat die lokale Oberflächenneigung einen erheblichen, wenn auch verdeckten Einfluss auf den lokalen Fluss. Dies ist aus Feldbeispielen deutlich zu sehen, im Gegensatz zu dem, was sich bei einem Rechtecksfenster ergeben würde.

Der Test mit Felddaten vom Variegated Glacier, Alaska, und vom Blue Glacier, Washington, erweist die longitudinale Mittelungstheorie als geeignet zur semi-quantitativen Erklärung für die beobachteten longitudinalen Flussschwankungen dieser Gletscher und für die des Fliessens in Abhängigkeit von Werten der “effektiven Oberflächenneigung”. Ausnahmen treten dort auf, wo der Fluss durch erhebliche Beiträge aus dem Gleiten am Untergrund im Eisbruch und in der Zungenzone des Blue Glacier sowie im Bereich des beginnenden Ausbruchs am Variegated Glacier verstärkt wird. Die mittelnde Länge 4, welche die beste Übereinstimmung zwischen berechneten und beobachteten Fliessmustern liefert, ist 2,5 km für den Variegated Glacier und 1,8 km für den Blue Glacier, was in beiden Fällen auf /h ~ 2 führt.

Wenn sich mit x ändert, aber nicht zu schnell, so bleibt die exponentielle Gewichtsfunktion eine recht gute Näherung für die exakte Green-Funktion der Differentialgleichung für die longitudinale Fluss-Kopplung; in dieser Näherung ist in dem mittelnden Integral (x), aber keine Funktion von x′. Auswirkungen longitudinaler Änderungen von spielen vermutlich nahe dem Gletscherende und -anfang sowie in der Nähe von Eisbrüchen eine Rolle.

Die longitudinale Mittelbildung kann auch für die Darstellung der lokalen Scherspannung am Untergrund in Abhängigkeit von longitudinalen Änderungen der lokalen ‘‘Hang-Spannung” vermittels longitudinaler Spannungsgradienten herangezogen werden.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stress-Gradient Coupling in Glacier Flow: I. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope *
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stress-Gradient Coupling in Glacier Flow: I. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope *
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stress-Gradient Coupling in Glacier Flow: I. Longitudinal Averaging of the Influence of Ice Thickness and Surface Slope *
      Available formats
      ×
Copyright
Footnotes
Hide All

Present address: Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775, U.S.A.

*

Contribution No. 4091, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

Footnotes
References
Hide All
Bindschadler, R., and others. 1977. Geometry and dynamics of a surge-type glacier, by Bindschadler, R., Harrison, W.D., Raymond, C.F. and Crosson, R.. Journal of Glaciology, Vol. 18, No. 79, p. 18194.
Budd, W.F. 1968. The longitudinal velocity profile of large ice masses. Union de Géodésie et Géophysique International. Association Internationale d’Hydrologie Scienlifique. Assemblée générale de Bern, 25 sept.–7 oct. 1967. [Commission de Neiges et Glaces.] Rapports et discussions, p. 5877. (Publication No. 79 de l’Association Internationale d’Hydrologie Scientifique.)
Budd, W.F. 1970[a]. Ice flow over bedrock perturbations. Journal of Glaciology, Vol. 9, No. 55, p. 2948.
Budd, W.F. 1970[b]. The longitudinal stress and strain-rate gradients in ice masses. Journal of Glaciology, Vol. 9, No. 55, p. 1927.
Budd, W.F. 1971. Stress variation with ice flow over undulations. Journal of Glaciology, Vol. 10, No 59, p. 17795.
Budd, W.F., and Jenssen, D. 1975. Numerical modelling of glacier systems. [Union Géodésique et Géophysique Internationale. Association Internationale des Sciences Hydrologiques. Commission des Neiges et Glaces.] Symposium. Neiges et glaces. Actes du collogue de Moscow, août 1971, p. 25791. (IAHS-AISH Publication No. 104.)
Collins, I.F. 1968. On the use of the equilibrium equations and flow law in relating the surface and bed topography of glaciers and ice sheets. Journal of Glaciology, Vol. 7, No. 50, p. 199104.
Courant, R., and Hilbert, D. 1931. Methoden der mathematischen Physik. Vol. 1. Berlin, Springer Verlag.
Echelmeyer, K.A. Unpublished. Response of Blue Glacier to a perturbation in ice thickness - theory and observation. [Ph.D. thesis, California Institute of Technology, Pasadena, 1983.]
Echelmeyer, K.A., and Kamb, B. 1986. Stress-gradient coupling in glacier flow: II. Longitudinal averaging in the flow response to small perturbations in ice thickness and surface slope. Journal of Glaciology, Vol. 32, No. 111, p. 28598.
Engelhardt, H.F., and others. 1978. Basal sliding and conditions at the glacier bed as revealed by bore-hole photography, by Engelhardt, H.F., Harrison, W.D. and Kamb, B. Journal of Glaciology, Vol. 20, No. 84, p. 469508.
Hutter, K. 1981. The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates. Journal of Glaciology, Vol. 27, No. 95, p. 3956.
Hutter, K. [c 1983.] Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. Dordrecht, etc., Reidel, D. Publishing Company/Tokyo, Terra Scientific Publishing Company.
Hutter, K., and others. 1981. First order stresses and deformations in glacies and ice sheets, by Hutter, K., Legerer, F., and Spring, U.. Journal of Glaciology, Vol. 27, No. 96, p. 22770.
Kamb, B. 1970. Sliding motion of glaciers: theory and observation. Reviews of Geophysics and Space Physics, Vol. 8, No. 4, p. 673728.
Kamb, B. 1986. Stress-gradient coupling in glacier flow: III.Exact longitudinal equilibrium equation. Journal ofGlaciology, Vol. 32, No. 112.
Kamb, B., and Echelmeyer, K.A. 1986. Stress-gradient coupling in glacier flow: IV. Effects of the “T” term. Journal of Glaciology, Vol. 32, No. 112.
Kamb, B., and Engelhardt, H.F. In press. Waves of accelerated motion in a glacier approaching surge: the mini-surges of Variegated Glacier, Alaska, U.S.A. Journal of Glaciology.
Kamb, B., and LaChapelle, E.R. 1968. Flow dynamics and structure in a fast-moving icefall. [Abstract.] Transactions of the American Geophysical Union, Vol. 49, p. 312.
Kamb, B., and others. 1985. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska, by Kamb, B. [and 7 others]. Science, Vol. 227, No. 4686, p. 46979.
Langdon, J., and Raymond, CF. 1978. Numerical calculation of adjustment of a glacier surface to perturbations of ice thickness. Materialy Glyatsiologicheskikh Issledovaniy. Khronika. Obsuzhdeniya, Vyp. 32, p. 23339.
Lingle, C.S. 1984. A numerical model of interactions between a polar ice stream and the ocean; application to ice stream E, West Antarctica, Journal of Geophysical Research, Vol. 89, No. C3, p. 352349.
Meier, M.F., and others. 1974. Flow of Blue Glacier, Olympic Mountains, Washington, U.S.A., by Meier, M.F., Kamb, B, Allen, C.R. and Sharp, R.P.. Journal of Glaciology, Vol. 13, No. 68, p. 187212.
Nye, J.F. 1952. The mechanics of glacier flow. Journal of Glaciology, Vol. 2, No. 11, p. 8293.
Nye, J.F. 1957. The distribution of stress and velocity in glaciers and ice-sheets. Proceedings of the Royal Society of London, Ser. A, Vol. 239, No. 1216, p. 11333.
Nye, J.F. 1969. The effect of longitudinal stress on the shear stress at the base of an ice sheet. Journal of Glaciology, Vol. 8, No. 53, p. 20713.
Paterson, W.S.B. 1981. The physics of glaciers. Second edition. Oxford, etc., Pergamon Press. (Pergamon International Library.)
Raymond, CF. 1978. Mechanics of glacier movement. (In Voight, B., ed. Rockslides and avalanches. I. Nature phenomena. New York, American Elsevier, p. 793833.)
Raymond, CF. 1980, Temperate valley glaciers. (In Colbeck, S.C., ed. Dynamics of snow and ice masses. New York, Academic Press, p. 79139.)
Raymond, CF., and others. Unpublished. Variegated Glacier studies, 1978, by Raymond, C.F., Harrison, W.D., Gitomer, L., MacQueen, J., Senear, E., and MacKeith, P..
Robin, G. de Q. 1968. Surface topography of ice sheets. Nature, Vol. 215, No. 5105, p. 102932.
Shumskiy, P.A. 1961. On the theory of glacier motion. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Assembleė générale de Helsinki, 25.7 - 6.8. 1960. Colloque sur la glaciologie antarctique, p. 14249. (Publication No. 55 de l’Association Internationale d’Hydrologie Scientifique.)
Stakgold, I. 1979. Green’s functions and boundary value problems. New York, Wiley-Interscience.
Weertman, J. 1964. The theory of glacier sliding. Journal of Glaciology, Vol. 5, No. 39, p. 287303.
Whillans, I.M., and Johnsen, S.J. 1983. Longitudinal variations in glacial flow: theory and test using data from the Byrd Station strain network, Antarctica. Journal of Glaciology, Vol. 29, No, 101, p. 7897.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed