Skip to main content
×
×
Home

Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction

  • Ilka Weikusat (a1), Atsushi Miyamoto (a2), Sérgio H. Faria (a3), Sepp Kipfstuhl (a1), Nobuhiko Azuma (a4) and Takeo Hondoh (a2)...
Abstract

Ice in polar ice sheets undergoes deformation during its flow towards the coast. Deformation and recrystallization microstructures such as subgrain boundaries can be observed and recorded using high-resolution light microscopy of sublimation-edged sample surfaces (microstructure mapping). Subgrain boundaries observed by microstructure mapping reveal characteristic shapes and arrangements. As these arrangements are related to the basal plane orientation, full crystallographic orientation measurements are needed for further characterization and interpretation of the subgrain boundary types. X-ray Laue diffraction measurements validate the sensitivity of different boundary types with sublimation used by microstructure mapping for the classification. X-ray Laue diffraction provides misorientation values of all four crystal axes. Line scans across a subgrain boundary pre-located by microstructure mapping can determine the rotation axis and angle. Together with the orientation of the subgrain boundary this yields information on the dislocation types. Tilt and twist boundaries composed of dislocations lying in the basal plane, and tilt boundaries composed of nonbasal dislocations were found. A statistical analysis shows that nonbasal dislocations play a significant role in the formation of all subgrain boundaries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction
      Available formats
      ×
Copyright
References
Hide All
Alley, R.B., Gow, A.J. and Meese, D.A.. 1995. Mapping c-axis fabrics to study physical processes in ice. J. Glaciol., 41(137), 197203.
Alley, R.B., Clark, P.U., Huybrechts, P. and Joughin, I.. 2005. Ice-sheet and sea-level changes. Science, 310(5747), 456460.
Baker, I. 2003. Imaging dislocations in ice. Microsc. Res. Techn., 62(1), 7082.
Barnes, P.R.F. 2003. Comment on ‘Grain boundary ridge on sintered bonds between ice crystals’ [J.Appl.Phys., vol. 90, 5782–5785 (2001)]. J. Appl. Phys., 93(1), 783785.
Durand, G., Perrson, A., Samyn, D. and Svensson, A.. 2008. Relation between neighbouring grains in the upper part of the NorthGRIP ice core: implications for rotation recrystallization. Earth Planet. Sci. Lett., 265(3–4), 666671.
Duval, P., Ashby, M.F. and Anderman, I.. 1983. Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87(21), 40664074.
Gottstein, G. and Shvindlerman, L.S.. 1999. Grain boundary migration in metals: thermodynamics, kinetics, applications. Boca Raton, FL, CRC Press.
Hamann, I., Weikusat, C., Azuma, N. and Kipfstuhl, S.. 2007. Evolution of ice crystal microstructure during creep experiments. J. Glaciol., 53(182), 479489.
Higashi, A., Fukuda, A., Shoji, H., Oguro, M., Hondoh, T. and Goto-Azuma, K.. 1988. Lattice defects in ice crystals. Sapporo, Hokkaido University Press.
Hirth, J.P. and Lothe, J.. 1982. Theory of dislocations. Second edition. Malabar, FL, Krieger.
Hobbs, P.V. 1974. Ice physics. Oxford, etc., Clarendon Press.
Hondoh, T. 2000. Nature and behavior of dislocations in ice. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 324.
Hondoh, T. 2009. An overview of microphysical processes in ice sheets: towards nanoglaciology. In Hondoh, T., ed. Physics of ice core records II, 123. (Low Temp. Sci., 68, Suppl.)
Hull, D. and Bacon, D.J.. 1984. Introduction to dislocations. Third edition. Oxford, etc., Pergamon Press.
Humphreys, F.J. and Hatherly, M.. 2004. Recrystallization and related annealing phenomena. Second edition. Oxford, etc., Pergamon Press.
Hutchinson, J.W. 1977. Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metall. Trans., 8(9), 14651469.
Huybrechts, P. 2007. Ice sheet modelling. In Nuttall, M., ed. Encyclopedia of the Arctic. New York, Routledge, 514517.
Kipfstuhl, S. and 6 others. 2006. Microstructure mapping: a new method for imaging deformation-induced micro-structural features of ice on the grain scale. J. Glaciol., 52(178), 398406.
Miyamoto, A., Shoji, H., Hori, A., Hondoh, T., Clausen, H.B. and Watanabe, O.. 2005. Ice fabric evolution process understood from anisotropic distribution of a-axis orientation on the GRIP (Greenland) ice core. Ann. Glaciol., 42, 4752.
Miyamoto, A., Weikusat, I. and Hondoh, T.. 2011. Complete determination of ice crystal orientation using Laue X-ray diffraction method. J. Glaciol., 57(201), 103110.
Montagnat, M. and Duval, P.. 2004. Dislocations in ice and deformation mechanisms: from single crystals to polar ice. Defects Diffus. Forum 229, 4354.
Mullins, W.W. 1957. Theory of thermal grooving. J. Appl. Phys., 28(3), 333339.
Nakaya, U. 1958. Mechanical properties of single crystals of ice. Part 1. Geometry of deformation. SIPRE Res. Rep. 28.
Read, W.T. and Shockley, W.. 1950. Dislocation models of crystal grain boundaries. Phys. Rev., 78(3), 275289.
Ruth, U. and 19 others. 2007. ‘EDML1’: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150,000 years. Climate Past, 3(3), 475484.
Saylor, D.M. and Rohrer, G.S.. 1999. Measuring the influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals. J. Am. Ceram. Soc., 82(6), 15291565.
Solomon, S. and 7 others, eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press.
Suzuki, S. 1970. Grain coarsening of microcrystals of ice (III). Low Temp. Sci., Ser. A 28, 4761. [In Japanese with English summary.]
Wang, Y., Kipfstuhl, S., Azuma, N., Thorsteinsson, T. and Miller, H.. 2003. Ice-fabrics study in the upper 1500 m of the Dome C (East Antarctica) deep ice core. Ann. Glaciol., 37, 97104.
Weertman, J. and Weertman, J.R.. 1992. Elementary dislocation theory. Oxford, etc., Oxford University Press.
Weikusat, I., Kipfstuhl, S., Azuma, N., Faria, S.H. and Miyamoto, A.. 2009a. Deformation microstructures in an Antarctic ice core (EDML) and in experimentally deformed artificial ice. In Hondoh, T., ed. Physics of ice core records II, 115123. (Low Temp. Sci., 68, Suppl.).
Weikusat, I., Kipfstuhl, S., Faria, S.H., Azuma, N. and Miyamoto, A.. 2009b. Subgrain boundaries and related microstructural features in EDML (Antarctica) deep ice core. J. Glaciol., 55(191), 461472.
Wesche, C., Eisen, O., Oerter, H., Schulte, D. and Steinhage, D.. 2007. Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica. J. Glaciol., 53(182), 442448.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 36 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 23rd April 2018. This data will be updated every 24 hours.