Skip to main content
×
Home
    • Aa
    • Aa

Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland

  • SHUN TSUTAKI (a1) (a2), SHIN SUGIYAMA (a2), DAIKI SAKAKIBARA (a2) (a3) (a4) and TAKANOBU SAWAGAKI (a5)
Abstract
ABSTRACT

To quantify recent thinning of marine-terminating outlet glaciers in northwestern Greenland, we carried out field and satellite observations near the terminus of Bowdoin Glacier. These data were used to compute the change in surface elevation from 2007 to 2013 and this rate of thinning was then compared with that of the adjacent land-terminating Tugto Glacier. Comparing DEMs of 2007 and 2010 shows that Bowdoin Glacier is thinning more rapidly (4.1 ± 0.3 m a−1) than Tugto Glacier (2.8 ± 0.3 m a−1). The observed negative surface mass-balance accounts for <40% of the elevation change of Bowdoin Glacier, meaning that the thinning of Bowdoin Glacier cannot be attributable to surface melting alone. The ice speed of Bowdoin Glacier increases down-glacier, reaching 457 m a−1 near the calving front. This flow regime causes longitudinal stretching and vertical compression at a rate of −0.04 a−1. It is likely that this dynamically-controlled thinning has been enhanced by the acceleration of the glacier since 2000. Our measurements indicate that ice dynamics indeed play a predominant role in the rapid thinning of Bowdoin Glacier.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Surface elevation changes during 2007–13 on Bowdoin and Tugto Glaciers, northwestern Greenland
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Correspondence: Shun Tsutaki <tsuta@lowtem.hokudai.ac.jp>
References
Hide All
AndersenML and 10 others (2015) Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth Planet. Sci. Lett., 409, 8995 (doi: 10.1016/j.epsl.2014.10.015)
BamberJL and 10 others (2013) A new bed elevation dataset for Greenland. Cryosphere, 7, 499510 (doi: 10.5194/tc-7-499-2013)
BennDI, WarrenCR and MottramRH (2007a) Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82, 143179 (doi: 10.1016/j.earscirev.2007.02.002)
BennDI, HultonN and MottramRH (2007b) ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46, 123130 (doi: 10.3189/172756407782871161)
BerthierE and 5 others (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ., 108(3), 327338 (doi: 10.1016/j.rse.2006.11.017)
BolchT, PieczonkaT and BennDI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5, 349358 (doi: 10.5194/tc-5-349-2011)
CsathoBM and 9 others (2014) Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl. Acad. Sci. U.S.A., 111(52), 1847818483 (doi: 10.1073/pnas.1411680112)
CuffeyKM and PatersonWSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
FischerA (2011) Comparison of direct and geodetic mass balances on a multi-annual time scale. Cryosphere, 5, 107124 (doi: 10.5194/tc-5-107-2011)
FujitaK, SuzukiR, NuimuraT and SakaiA (2008) Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J. Glaciol., 54(185), 220228 (doi: 10.3189/002214308784886162)
FukudaT, SugiyamaS, SawagakiT and NakamuraK (2014) Recent variations in the terminus position, ice velocity and surface elevation of Langhovde Glacier, East Antarctica. Antarct. Sci., 26(6), 636645 (doi: 10.1017/S0954102014000364)
HeidT and KääbA (2012) Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ., 118, 339355 (doi: 10.1016/j.rse.2011.11.024)
HowatIM, JoughinI, TulaczykS and GogineniS (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett., 32, L22502 (doi: 10.1029/2005GL024737)
HowatIM, JoughinI and ScambosTA (2007) Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315(5818), 15591561 (doi: 10.1126/science.1138478)
HowatIM, BoxJE, AhnY, HerringtonA and McFaddenEM (2010) Seasonal variability in the dynamics of marine terminating outlet glaciers in Greenland. J. Glaciol., 56(198), 601613 (doi: 10.3189/002214310793146232)
JoughinI and 7 others (2008) Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res., 113, F04006 (doi: 10.1029/2008JF001023)
JoughinI, SmithBE, HowatIM, ScambosT and MoonT (2010) Greenland flow variability from ice-sheet wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/002214310792447734)
KhanSA, WahrJ, BevisM, VelicognaI and KendrickE (2010) Spread of ice mass loss into northwestern Greenland observed by GRACE and GPS. Geophys. Res. Lett., 37, L06501 (doi: 10.1029/2010GL042460)
KhanSA and 12 others (2013) Recurring dynamically induced thinning during 1985 to 2010 on Upernavik Isstrøm, West Greenland. J. Geophys. Res., 118, 111121 (doi: 10.1029/2012JF002481)
KhanSA and 12 others (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim., 4, 292299 (doi: 10.1038/nclimate2161)
KhanSA and 5 others (2015) Greenland ice sheet mass balance: a review. Rep. Prog. Phys., 78, 046801 (doi: 10.1088/0034-4885/78/4/046801)
KjærKH and 13 others (2012) Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science, 337(6094), 569573 (doi: 10.1126/science.1220614)
KjeldsenKK and 9 others (2013) Improved ice loss estimate of the northwestern Greenland ice sheet. J. Geophys. Res., 118 (doi: 10.1029/2012JB009684)
KjeldsenKK and 15 others (2015) Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 528, 396400 (doi: 10.1038/nature16183)
LamsalD, SawagakiT and WatanabeT (2011) Digital terrain modelling using Corona and ALOS PRISM data to investigate the distal part of Imja Glacier, Khumbu Himal, Nepal. J. Mt. Sci., 8(3), 390402 (doi: 10.1007/s11629-011-2064-0)
LindbäckK and 8 others (2014) High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet. Earth Syst. Sci. Data, 6, 331338 (doi: 10.5194/essd-6-331-2014)
MeierMF and PostA (1987) Fast tidewater glaciers. J. Geophys. Res., 92(B9), 90519058 (doi: 10.1029/JB092iB09p09051)
MinowaM, SugiyamaS, SakakibaraD and SawagakiT (2015) Contrasting glacier variations of Glaciar Perito Moreno and Glacial Amegino, Southern Patagonia Icefield. Ann. Glaciol., 56(70), 2632 (doi: 10.3189/2015AoG70A020)
Morlighem M and 7 others, (2013) High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. J. Glaciol., 59(218), 10151023 (doi: 10.3189/2013JoG12J235)
MotykaRJ, FahnestockM and TrufferM (2010) Volume change of Jakobshavn Isbræ, West Greenland: 1985–1997–2007. J. Glaciol., 56(198), 635646 (doi: 10.3189/002214310793146304)
NuimuraT, FujitaK, YamaguchiS and SharmaRR (2012) Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol., 58(210), 648656 (doi: 10.3189/2012JoG11J061)
O'NeelS, EchelmeyerKA and MotykaRJ (2001) Short-term flow dynamics of a retreating tidewater glacier: LeConte Glacier, Alaska, U.S.A. J. Glaciol., 47(159), 567578 (doi: 10.3189/172756501781831855)
ØstremG and StanleyAD (1969) Glacier mass balance measurements, a manual for field and office work: a guide for personnel with limited backgrounds in glaciology. Department of the Environment, Inland Waters Blanch, Ottawa, Ont.
PorterDF and 6 others (2014) Bathymetric control of tidewater glacier mass loss in northwestern Greenland. Earth Planet. Sci. Lett., 401, 4046 (doi: 10.1016/j.epsl.2014.05.058)
PritchardHD, ArthernRJ, VaughanDG and EdwardsLA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971975 (doi: 10.1038/nature08471)
SakakibaraD and SugiyamaS (2014) Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. Earth Surf., 119, 25412554 (doi: 10.1002/2014JF003148)
SakakibaraD, SugiyamaS, SawagakiT, MarinsekS and SkvarcaP (2013) Rapid retreat, acceleration and thinning of Glaciar Upsala, Southern Patagonia Icefield, initiated in 2008. Ann. Glaciol., 54(63), 131138 (doi: 10.3189/2013AoG63A236)
SasgenI and 8 others (2012) Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sci. Lett., 333–334, 293303 (doi: 10.1016/j.epsl.2012.03.033)
SawagakiT, LamsalD, ByersAC and WatanabeT (2012) Changes in surface morphology and glacial lake development of Chamlang South Glacier in the eastern Nepal Himalaya since 1964. Global Environ. Res., 16, 8394
SørensenLS and 7 others (2011) Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density. Cryosphere, 5, 173186 (doi: 10.5194/tc-5-173-2011)
SugiyamaS and 7 others (2011) Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nat. Geosci., 4, 597600 (doi: 10.1038/NGEO1218)
SugiyamaS and 5 others (2014) Initial field observations on Qaanaaq ice cap, northwestern Greenland. Ann. Glaciol., 55(66), 2533 (doi: 10.3189/2014AoG66A102)
SugiyamaS, SakakibaraD, TsutakiS, MaruyamaM and SawagakiT (2015) Glacier dynamics near the calving front of Bowdoin Glacier, northwestern Greenland. J. Glaciol., 61(226), 223232 (doi: 10.3189/2015JoG14J127)
TakeuchiN, NagatsukaN, UetakeJ and ShimadaR (2014) Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland. Bull. Glaciol. Res., 32, 8594 (doi: 10.5331/bgr.32.85)
ThomasRH (2004) Forth-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland. J. Glaciol., 50(168), 5766 (doi: 10/3189/172756504781830321)
TrüsselBL, MotykaRJ, TrufferM and LarsenCF (2013) Rapid thinning of lake-calving Yakutat Glacier and the collapse of the Yakutat Icefield, southeast Alaska, USA. J. Glaciol., 59(215), 149161 (doi: 10.3189/2013JoG12J081)
TsutakiS, SugiyamaS, NishimuraD and FunkM (2013) Acceleration and flotation of a glacier terminus during formation of a proglacial lake in Rhonegletscher, Switzerland. J. Glaciol., 59(215), 559570 (doi: 10.3189/2013JoG12J107)
Van AsD (2011) Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. J. Glaciol., 57(202), 208220 (doi: 10.3189/002214311796405898)
van den BroekeM and 8 others (2009) Partitioning recent Greenland mass loss. Science, 326, 984 (doi: 10.1126/science.1178176)
Van der VeenCJ, PlummerJC and StearnsLA (2011) Controls on the recent speed-up of Jakobshavn Isbræ, West Greenland. J. Glaciol., 57(204), 770782 (doi: 10.3189/002214311797409776)
VieliA, FunkM and BlatterH (2000) Tidewater glaciers: frontal flow acceleration and basal sliding. Ann. Glaciol., 31, 217221
VieliA, FunkM and BlatterH (2001) Flow dynamics of tidewater glaciers: a numerical modelling approach. J. Glaciol., 47(159), 595606 (doi: 10.3189/172756501781831747)
WalshKM, HowatI, AhnY and EnderlinEM (2012) Changes in the marine-terminating glaciers of central east Greenland, 2000–2010. Cryosphere, 6, 211220 (doi: 10.5194/tc-6-211-2012)
ZwallyHJ and 11 others (2011) Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol., 57(201), 88102 (doi: 10.3189/002214311795306682)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 18
Total number of PDF views: 241 *
Loading metrics...

Abstract views

Total abstract views: 515 *
Loading metrics...

* Views captured on Cambridge Core between 9th September 2016 - 19th October 2017. This data will be updated every 24 hours.