Skip to main content Accessibility help
×
×
Home

Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A.

  • Mauri S. Pelto (a1) and Cliff Hedlund (a2)
Abstract

Observation of the terminus behavior of 38 North Cascade glaciers, Washington, U.S.A., since 1890 shows three different types of glacier response: (1) Continuous retreat from the Little Ice Age (LIA) advanced positions from 1890 to approximately 1950, followed by a period of advance from 1950 to 1976, and then retreat since 1976. (2) Rapid retreat from 1890 to approximately 1950, slow retreat or equilibrium from 1950 to 1976, and moderate to rapid retreat since 1976. (3) Continuous retreat from 1890 to the present.

Type 1 glaciers are notable for steeper slopes, extensive crevassing and higher terminusregion velocities. Type 2 glaciers have intermediate velocities, moderate crevassing and intermediate slopes. Type 3 glaciers have low slopes, modest crevassing and low terminusregion velocities. This indicates that the observed differences in the response time and terminus behavior of North Cascade glaciers in reaction to climate change are related to variations in specific characteristics of the glaciers. The response time is approximately 20–30 years on type 1 glaciers, 40–60 years on type 2 glaciers and a minimum of 60–100 years on type 3 glaciers. The high correlation in annual balance between North Cascade glaciers indicates that microclimates are not the key to differences in behavior. Instead it is the physical characteristics — slope, terminus velocity, thickness and accumulation rate — of the glacier that determine recent terminus behavior and response time. The delay between the onset of a mass-balance change and initiation of a noticeable change in terminus behavior has been observed on 21 glaciers to be 4–16 years. This initial response time applies to both positive and negative changes in mass balance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A.
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A.
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Terminus behavior and response time of North Cascade glaciers, Washington, U.S.A.
      Available formats
      ×
Copyright
References
Hide All
Burbank, D. W. 1981. A chronology of late Holocene glacier fluctuations on Mt. Rainier. Arct. Alp. Res., 13(4), 369386.
Driedger, C. L. and Kennard, P. M.. 1986. Ice volumes on Cascade volcanoes: Mount Rainier, Mount Hood, Three Sisters, and Mount Shasta. U.S. Geol. Surv. Prof. Pap. 1365.
Ebbesmeyer, C. C., Cayan, D. R., McLain, D. R., Nichols, F. H., Peterson, D. H. and Redmond, K. T.. 1991. 1976 step in the Pacific climate: forty environmental changes between 1968–1975 and 1977–1984. In Betancourt, J. L. and Tharp, V., eds. Proceedings of the 7th Annual Pacific Climate (PACLIM) Workshop, 10–13 April 1990, Asilomar, California. Sacramento, CA, California Department of Water Resources, 129141. (Interagency Ecological Studies ProgramTechnical Report 26.)
Harper, J. T. 1993. Glacier terminus fluctuations on Mount Baker, Washington, U.S.A., 1940–1990, and climatic variations. Arct. Alp. Res., 25(4), 332340.
Heikkinen, A. 1984. Dendrochronological evidence of variation of Coleman Glacier, Mt. Baker, Washington. Arct. Alp. Res., 16(1), 5354.
Herren, E. R., Hoelzle, M. and Maisch, M.. 1999. The Swiss glaciers, 1995/96 and 1996/97. Zürich, Swiss Academy of Sciences. Glaciological Commission; Federal Institute of Technology. Laboratory of Hydraulics, Hydrology and Glaciology. (Glaciological Report No. 117/118.)
Holmlund, P. and Fuenzalida, H.. 1995. Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile. J. Glaciol., 41(139), 465473.
Hubley, R. C. 1956. Glaciers of the Washington Cascade and Olympic Mountains; their present activity and its relation to local climatic trends. J. Glaciol., 2(19), 669674.
Jóhannesson, T., Raymond, C. and Waddington, E.. 1989. Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 35(121), 355369.
Krimmel, R. M. 1970. Gravimetric ice thickness determination, South Cascade Glacier, Washington. Northwest Sci., 44(3), 147153.
Krimmel, R. M. 1994. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year. U.S. Geol. Surv. Water-Resour. Invest. Rep. 94-4139.
Krimmel, R. M. 1996. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1995 balance year. U.S. Geol. Surv. Water-Resour. Invest. Rep. 95-4174.
Krimmel, R. M. 1999. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington. Geogr. Ann., 81A(4), 653658.
Long, W. A. 1953. Recession of Easton and Deming glaciers. Sci. Mon., 76(4), 241247.
Long, W. A. 1955. What’s happening to our glaciers. Sci. Mon., 81(2), 5764.
Long, W. A. 1956. Present growth and advance of Boulder Glacier, Mt. Baker. Sci. Mon., 83(1), 12.
Marcus, M. G., Chambers, F. B., Miller, M. M. and Lang, M.. 1995. Recent trends in the Lemon Creek Glacier, Alaska. Phys. Geogr., 16(2), 150161.
Meier, M. F. and Post, A. S.. 1962. Recent variations in mass net budgets of glaciers in western North America. International Association of Scientific Hydrology Publication 58 (Symposium at Obergurgl 1962 — Variations of the Regime of Existing Glaciers ), 6377.
Miller, C. D. 1969. Chronology of Neoglacial moraines in the Dome Peak area, North Cascade Range, Washington. Arct. Alp. Res., 1(1), 4966.
Nye, J. F. 1960. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. London, Ser. A, 256(1287), 559584.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Pelto, M. S. 1988. The annual balance of North Cascade glaciers, Washington, U.S.A., measured and predicted using an activity-index method. J Glaciol., 34(117), 194199.
Pelto, M. S. 1993. Current behavior of glaciers in the North Cascades and effect on regional water supplies. Wash. Geol., 21(2), 310.
Pelto, M. S. 1996. Annual net balance of North Cascade glaciers, 1984–94. J. Glaciol., 42(140), 39.
Pelto, M. S. 1997. Correspondence. Reply to comments of Meier and others on “Annual net balance of North Cascade glaciers, 1984–94” by Mauri S. Pelto. J. Glaciol., 43(143), 193196.
Pelto, M. S. and Riedel, J.. In press. Spatial and temporal variations in annual balance of North Cascade glaciers, Washington, 1984–2000. Hydrol. Processes.
Porter, S. C. 1986. Pattern and forcing of Northern Hemisphere glacier variations during the last millennium. Quat. Res., 26(1), 2748.
Post, A., Richardson, D., Tangborn, W. V. and Rosselot, F. L.. 1971. Inventory of glaciers in the North Cascades, Washington. U.S. Geol. Surv. Prof Pap. 705-A.
Rusk, C. E. 1924. Tales of a western mountaineer. New York, Houghton Mifflin Co.
Schwitter, M. P. and Raymond, C. F.. 1993. Changes in the longitudinal profiles of glaciers during advance and retreat. J. Glaciol., 39(133), 582590.
Tangborn, W. 1980. Two models for estimating climate–glacier relationships in the North Cascades, Washington, U.S.A. J. Glaciol., 25(91), 321.
Tangborn, W. V., Fountain, A. G. and Sikonia, W. G.. 1990. Effect of area distribution with altitude on glacier mass balance — a comparison on North and South Klawatti glaciers, Washington State, U.S.A. Ann. Glaciol., 14, 278282.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed