Skip to main content Accessibility help
×
×
Home

A unifying framework for iceberg-calving models

  • Jason M. Amundson (a1) and Martin Truffer (a1)

Abstract

We propose a general framework for iceberg-calving models that can be applied to any calving margin. The framework is based on mass continuity, the assumption that calving rate and terminus velocity are not independent and the simple idea that terminus thickness following a calving event is larger than terminus thickness at the event onset. The theoretical, near steady-state analysis used to support and analyze the framework indicates that calving rate is governed, to first order, by ice thickness, thickness gradient, strain rate, mass-balance rate and backwards melting of the terminus; the analysis furthermore provides a physical explanation for a previously derived empirical relationship for ice-shelf calving (Alley and others, 2008). In the calving framework the pre- and post-calving terminus thicknesses are given by two unknown but related functions. The functions can vary independently of changes in glacier flow and geometry, and can therefore account for variations in calving behavior due to external forcings and/or self-sustaining calving processes (positive feedbacks). Although the calving framework does not constitute a complete calving model, any thickness-based calving criterion can easily be incorporated into the framework. The framework should be viewed as a guide for future attempts to parameterize calving.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A unifying framework for iceberg-calving models
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A unifying framework for iceberg-calving models
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A unifying framework for iceberg-calving models
      Available formats
      ×

Copyright

References

Hide All
Alley, R.B. and 7 others. 2008. A simple law for ice-shelf calving.Science, 322(5906), 1344. (10.1126/science.1162543.)
Amundson, J.M., Truffer, M., Luthi, M.P., Fahnestock, M., West, M. and Motyka, R.J.. 2008. Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett, 35(22), L22501. (10.1029/2008GL035281.)
Amundson, J.M., Brown, M., Truffer, M., Luthi, J., , M.P. and Motyka, R.J.. 2010. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005. (10.1029/2009JF001405.)
Benn, D.I., Hulton, N.R.J. and Mottram, R.H.. 2007a. ‘Calving laws’, ‘sliding laws’ and the stability of tidewater glaciers. Ann. Glaciol., 46, 123-130.
Benn, D.I., Warren, C.W. and Mottram, R.H.. 2007b. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev., 82(3-4), 143-179.
Boyce, E.S., Motyka, R.J. and Truffer, M.. 2007. Flotation and retreat of a lake-calving terminus, Mendenhall Glacier, southeast Alaska, USA. J. Glaciol., 53(181), 211-224.
Braun, M. and Humbert, A.. 2009. Recent retreat of Wilkins Ice Shelf reveals new insights in ice shelf break-up mechanisms. IEEE Geosci. Remote Sens. Lett., 46(2), 263-267.
Braun, M., Humbert, A. and Moll, A.. 2009. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere, 3(1), 41-56.
Brown, C.S., Meier, M.F. and Post, A.. 1982. Calving speed of Alaska tidewater glaciers, with application to Columbia Glacier. USGS Prof. Pap. 1258-C, C1-C13.
Crabtree, R.D. and Doake, C.S.M.. 1982. Pine Island Glacier and its drainage basin: results from radio-echo sounding. Ann. Glaciol., 3, 65-70.
De Angelis, H. and Skvarca, P.. 2003. Glacier surge after ice shelf collapse. Science, 299(5612), 1560-1562.
Hagen, J.O., Melvold, K., Pinglot, F. and Dowdeswell, J.A.. 2003. On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct. Antarct. Alp. Res., 35(2), 264-270.
Howat, I.M., Joughin, I., Fahnestock, M., Smith, B.E. and Scambos, T.. 2008. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000-2006: ice dynamics and coupling to climate. J. Glaciol., 54(187), 646-660.
Jacobs, S.S., Hellmer, H.H., Doake, C.S.M., Jenkins, A. and Frolich, R.M.. 1992. Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38(130), 375-387.
Joughin, I., Abdalati, W. and Fahnestock, M.A.. 2004. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature, 432(7017), 608-610.
Joughin, I. and 7 others. 2008a. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res., 113(F4), F04006. (10.1029/2008JF001023.)
Joughin, I. and 8 others. 2008b. Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res., 113(F1), F01004. (10.1029/ 2007JF000837.)
Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M. and Moon, T.. 2008c. Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320(5877), 781-783.
Lazzara, M.A., Jezek, K.C., Scambos, T.A., MacAyeal, D.R. and van der Veen, C.I. J.. 1999. On the recent calving of icebergs from the Ross Ice Shelf. Polar Geogr., 23(3), 201-212.
MacAyeal, D.R., Okal, E.A., Aster, R.C. and Bassis, J.N.. 2009. Seismic observations of glaciogenic ocean waves (microtsunamis) on icebergs and ice shelves. J. Glaciol., 55(190), 193-206.
Meier, M.F., Rasmussen, L.A., Krimmel, R.M., Olsen, R.W. and Frank, D.. 1985. Photogrammetric determination of surface altitude, terminus position, and ice velocity of Columbia Glacier, Alaska. USGS Prof. Pap. 1258-F.
Motyka, R.J., Hunter, L., Echelmeyer, K.A. and Connor, C.. 2003. Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA. Ann. Glaciol., 36, 57-65.
Naruse, R. and Skvarca, P.. 2000. Dynamic features of thinning and retreating Glaciar Upsala, a lacustrine calving glacier in southern Patagonia. Arct. Antarct. Alp. Res., 32(4), 485-491.
Nettles, M. and 12 others. 2008. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503. (10.1029/2008GL036127.)
O’Neel, S., Echelmeyer, K.A. and Motyka, R.J.. 2003. Short-term variations in calving of a tidewater glacier: LeConte Glacier, Alaska, USA. J. Glaciol., 49(167), 587-598.
O’Neel, S., Marshall, H.P., McNamara, D.E. and Pfeffer, W.T.. 2007. Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. J. Geophys. Res., 112(F3), F03S23. (10.1029/ 2006JF000595.)
Paterson, W.S.B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Pfeffer, W.T. 2007. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res., 112(F3), F03S25. (10.1029/ 2006JF000590.)
Pralong, A. and Funk, M.. 2005. Dynamic damage model of crevasse opening and application to glacier calving. J. Geophys. Res., 110(B1), B01309. (10.1029/2004JB003104.)
Rignot, E. and Kanagaratnam, P.. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986-990.
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A. and Thomas, R.. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401. (10.1029/2004GL020697.)
Rignot, E., Koppes, M. and Velicogna, I.. 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nature Geosci., 3(3), 141-218.
Röhl, K. 2006. Thermo-erosional notch development at fresh-watercalving Tasman Glacier, New Zealand. J. Glaciol., 52(177), 203-213.
Rott, H., Skvarca, P. and Nagler, T.. 1996. Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271(5250), 788-792.
Sanderson, T.J.O. 1979. Equilibrium profile of ice shelves. J. Glaciol., 22(88), 435-460.
Scambos, T.A., Hulbe, C., Fahnestock, M. and Bohlander, J.. 2000. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516-530.
Van der Veen, C.J. 1996. Tidewater calving. J. Glaciol., 42(141), 375-385.
Venteris, E.R. 1999. Rapid tidewater glacier retreat: a comparison between Columbia Glacier, Alaska and Patagonian calving glaciers. Global Planet. Change, 22(1-4), 131-138.
Vieli, A., Funk, M. and Blatter, H.. 2001. Flow dynamics of tidewater glaciers: a numerical modelling approach. J. Glaciol., 47(159), 595-606.
Vieli, A., Jania, J. and Kolondra, L.. 2002. The retreat of a tidewater glacier: observations and model calculations on Hansbreen, Spitsbergen. J. Glaciol., 48(163), 592-600.
Walter, F., O’Neel, S., McNamara, D.E., Pfeffer, T., Bassis, J. and Fricker, H.A.. 2010. Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett, 37(1), L15501. (10.1029/2010GL043201.)
Warren, C., Benn, D., Winchester, V. and Harrison, S.. 2001. Buoyancy-driven lacustrine calving, Glaciar Nef, Chilean Patagonia. J. Glaciol., 47(156), 135-146.
Weertman, J. 1957. Deformation of floating ice shelves. J. Glaciol., 3(21), 38-42.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed